Phenomenology with fluctuating quantum geometries in loop quantum cosmology

Ivan Agullo, Abhay Ashtekar, Brajesh Gupt

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

The goal of this paper is to probe phenomenological implications of large fluctuations of quantum geometry in the Planck era, using cosmology of the early universe. For the background (Friedmann, Lemaître, Robertson, Walker) quantum geometry, we allow 'widely spread' states in which the relative dispersions are as large as in the Planck regime. By introducing suitable methods to overcome the ensuing conceptual and computational issues, we calculate the power spectrum and the spectral index n s(k) of primordial curvature perturbations. These results generalize the previous work in loop quantum cosmology which focused on those states which were known to remain sharply peaked throughout the Planck regime. Surprisingly, even though the fluctuations we now consider are large, their presence does not add new features to the final and n s(k): within observational error bars, their effect is degenerate with a different freedom in the theory, namely the number of pre-inflationary e-folds between the bounce and the onset of inflation. Therefore, with regard to observational consequences, one can simulate the freedom in the choice of states with large fluctuations in the Planck era using the simpler, sharply peaked states, simply by allowing for different values of NB∗.

Original languageEnglish (US)
Article number074003
JournalClassical and Quantum Gravity
Volume34
Issue number7
DOIs
StatePublished - Mar 7 2017

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Phenomenology with fluctuating quantum geometries in loop quantum cosmology'. Together they form a unique fingerprint.

Cite this