Phosphoethanolamine methyltransferases in phosphocholine biosynthesis: Functions and potential for antiparasite therapy

April M. Bobenchik, Yoann Augagneur, Bing Hao, Jeffrey C. Hoch, Choukri Ben Mamoun

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


S-adenosyl-l-methionine (SAM)-dependent methyltransferases represent a diverse group of enzymes that catalyze the transfer of a methyl group from a methyl donor SAM to nitrogen, oxygen, sulfur or carbon atoms of a large number of biologically active large and small molecules. These modifications play a major role in the regulation of various biological functions such as gene expression, signaling, nuclear division and metabolism. The three-step SAM-dependent methylation of phosphoethanolamine to form phosphocholine catalyzed by phosphoethanolamine N-methyltransferases (PMTs) has emerged as an important biochemical step in the synthesis of the major phospholipid, phosphatidylcholine, in some eukaryotes. PMTs have been identified in nematodes, plants, African clawed frogs, zebrafish, the Florida lancelet, Proteobacteria and human malaria parasites. Data accumulated thus far suggest an important role for these enzymes in growth and development. This review summarizes published studies on the biochemical and genetic characterization of these enzymes, and discusses their evolution and their suitability as targets for the development of therapies against parasitic infections, as well as in bioengineering for the development of nutritional and stress-resistant plants.

Original languageEnglish (US)
Pages (from-to)609-619
Number of pages11
JournalFEMS Microbiology Reviews
Issue number4
StatePublished - Jul 2011

All Science Journal Classification (ASJC) codes

  • General Medicine


Dive into the research topics of 'Phosphoethanolamine methyltransferases in phosphocholine biosynthesis: Functions and potential for antiparasite therapy'. Together they form a unique fingerprint.

Cite this