Abstract
Recently, two-dimensional materials and in particular transition metal dichalcogenides (TMDs) have been extensively studied because of their strong light-matter interaction and the remarkable optoelectronic response of their field-effect transistors (FETs). Here, we report a photoconductivity study from FETs built from few-layers of p-WSe2 measured in a multi-terminal configuration under illumination by a 532 nmlaser source. The photogenerated current was measured as a function of the incident optical power, of the drain-to-source bias and of the gate voltage. We observe a considerably larger photoconductivity when the phototransistors were measured via a four-terminal configuration when compared to a two-terminal one. For an incident laser power of 248 nW, we extract 18 A W-1 and ∼4000% for the two-terminal responsivity (R) and the concomitant external quantum efficiency (EQE) respectively, when a bias voltage Vds = 1 Vand a gate voltage Vbg = 10 Vare applied to the sample. R and EQE are observed to increase by 370% to ∼85 A W-1 and ∼20 000% respectively, when using a four-terminal configuration. Thus, we conclude that previous reports have severely underestimated the optoelectronic response of transition metal dichalcogenides, which in fact reveals a remarkable potential for photosensing applications.
Original language | English (US) |
---|---|
Article number | 041004 |
Journal | 2D Materials |
Volume | 3 |
Issue number | 4 |
DOIs | |
State | Published - Oct 14 2016 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering