Photosynthesis by symbiotic sponges enhances their ability to erode calcium carbonate

Michelle Achlatis, Christine H.L. Schönberg, Rene M. van der Zande, Todd C. LaJeunesse, Ove Hoegh-Guldberg, Sophie Dove

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Photosynthesis is an important driver of calcium carbonate deposition on tropical coral reefs largely due to the symbiosis of numerous invertebrates with photosynthetic dinoflagellates in the family Symbiodiniaceae. In bioeroding sponges, however, similar symbioses appear to support the decalcification of carbonate substrates. Compared to its role in calcification, the relative importance of photosynthesis to decalcification processes is less known. Here, the daytime and night-time chemical bioerosion rates of the common Indo-Pacific sponge Cliona orientalis were examined under varying levels of photosynthetic activity and/or varying abundances of intracellular dinoflagellates. Photosynthesis was manipulated either by preconditioning the sponges with the photosynthetic inhibitor diuron (DCMU), or by exposing them to short-term heat stress to achieve bleaching (loss of symbionts). DCMU reduced symbiont numbers and diminished their ability to evolve oxygen. Thermal stress caused a significantly greater loss of symbionts, but photosynthesis was less inhibited. In both cases, decreases in photosynthetic activity and symbiont densities led to proportionately lowered daytime chemical bioerosion rates. Moreover, increased rates of night-time bioerosion were linked to greater daytime rates of photosynthesis, rather than to the night-time respiration of the sponge holobiont. Our findings support the conclusion that photosynthetic products (photosynthates) and/or by-products (oxygen) stimulate sponge bioerosion. This work further reveals the importance of symbionts in the ecology of such sponges and in their ability to sustain high bioerosion activity in otherwise nutrient-poor ecosystems.

Original languageEnglish (US)
Pages (from-to)140-149
Number of pages10
JournalJournal of Experimental Marine Biology and Ecology
StatePublished - Jul 2019

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Aquatic Science


Dive into the research topics of 'Photosynthesis by symbiotic sponges enhances their ability to erode calcium carbonate'. Together they form a unique fingerprint.

Cite this