TY - JOUR
T1 - Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants
AU - Zhou, Xiaofan
AU - Lin, Zhenguo
AU - Ma, Hong
N1 - Funding Information:
We thank Professors Bryan Grenfell, Edward Holmes, Hongzhi Kong, Stephen Schaeffer, and anonymous reviewers for helpful comments. We thank Yuannian Jiao and Professor Claude dePamphilis for discussion on phylogenetic methods. This work was supported by a grant from the US Department of Energy (DE-FG02-02ER15332), the Biology Department, the Eberly College of Sciences, and the Huck Institutes of the Life Sciences, the Pennsylvania State University. XZ was supported in part by NSF Plant Genome Research Program (DEB 0638595, The Ancestral Angiosperm Genome Project). HM was also supported by funds from Fudan University.
PY - 2010/4/6
Y1 - 2010/4/6
N2 - Background: Gene duplication is considered a major driving force for evolution of genetic novelty, thereby facilitating functional divergence and organismal diversity, including the process of speciation. Animals, fungi and plants are major eukaryotic kingdoms and the divergences between them are some of the most significant evolutionary events. Although gene duplications in each lineage have been studied extensively in various contexts, the extent of gene duplication prior to the split of plants and animals/fungi is not clear.Results: Here, we have studied gene duplications in early eukaryotes by phylogenetic relative dating. We have reconstructed gene families (with one or more orthogroups) with members from both animals/fungi and plants by using two different clustering strategies. Extensive phylogenetic analyses of the gene families show that, among nearly 2,600 orthogroups identified, at least 300 of them still retain duplication that occurred before the divergence of the three kingdoms. We further found evidence that such duplications were also detected in some highly divergent protists, suggesting that these duplication events occurred in the ancestors of most major extant eukaryotic groups.Conclusions: Our phylogenetic analyses show that numerous gene duplications happened at the early stage of eukaryotic evolution, probably before the separation of known major eukaryotic lineages. We discuss the implication of our results in the contexts of different models of eukaryotic phylogeny. One possible explanation for the large number of gene duplication events is one or more large-scale duplications, possibly whole genome or segmental duplication(s), which provides a genomic basis for the successful radiation of early eukaryotes.
AB - Background: Gene duplication is considered a major driving force for evolution of genetic novelty, thereby facilitating functional divergence and organismal diversity, including the process of speciation. Animals, fungi and plants are major eukaryotic kingdoms and the divergences between them are some of the most significant evolutionary events. Although gene duplications in each lineage have been studied extensively in various contexts, the extent of gene duplication prior to the split of plants and animals/fungi is not clear.Results: Here, we have studied gene duplications in early eukaryotes by phylogenetic relative dating. We have reconstructed gene families (with one or more orthogroups) with members from both animals/fungi and plants by using two different clustering strategies. Extensive phylogenetic analyses of the gene families show that, among nearly 2,600 orthogroups identified, at least 300 of them still retain duplication that occurred before the divergence of the three kingdoms. We further found evidence that such duplications were also detected in some highly divergent protists, suggesting that these duplication events occurred in the ancestors of most major extant eukaryotic groups.Conclusions: Our phylogenetic analyses show that numerous gene duplications happened at the early stage of eukaryotic evolution, probably before the separation of known major eukaryotic lineages. We discuss the implication of our results in the contexts of different models of eukaryotic phylogeny. One possible explanation for the large number of gene duplication events is one or more large-scale duplications, possibly whole genome or segmental duplication(s), which provides a genomic basis for the successful radiation of early eukaryotes.
UR - http://www.scopus.com/inward/record.url?scp=77950533626&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950533626&partnerID=8YFLogxK
U2 - 10.1186/gb-2010-11-4-r38
DO - 10.1186/gb-2010-11-4-r38
M3 - Article
C2 - 20370904
AN - SCOPUS:77950533626
SN - 1474-7596
VL - 11
JO - Genome biology
JF - Genome biology
IS - 4
M1 - r38
ER -