Physical properties of secondary photochemical aerosol from OH oxidation of a cyclic siloxane

Nathan J. Janechek, Rachel F. Marek, Nathan Bryngelson, Ashish Singh, Robert L. Bullard, William H. Brune, Charles O. Stanier

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Cyclic volatile methyl siloxanes (cVMS) are high-production chemicals present in many personal care products. They are volatile, hydrophobic, and relatively long-lived due to slow oxidation kinetics. Evidence from chamber and ambient studies indicates that oxidation products may be found in the condensed aerosol phase. In this work, we use an oxidation flow reactor to produce ∼100 μm -3 of organosilicon aerosol from OH oxidation of decamethylcyclopentasiloxane (D 5 ) with aerosol mass fractions (i.e., yields) of 0.2-0.5. The aerosols were assessed for concentration, size distribution, morphology, sensitivity to seed aerosol, hygroscopicity, volatility and chemical composition through a combination of aerosol size distribution measurement, tandem differential mobility analysis, and electron microscopy. Similar aerosols were produced when vapor from solid antiperspirant was used as the reaction precursor. Aerosol yield was sensitive to chamber OH and to seed aerosol, suggesting sensitivity of lower-volatility species and recovered yields to oxidation conditions and chamber operation. The D 5 oxidation aerosol products were relatively non-hygroscopic, with an average hygroscopicity kappa of ∼0.01 and nearly non-volatile up to 190°C temperature. Parameters for exploratory treatment as a semi-volatile organic aerosol in atmospheric models are provided.

Original languageEnglish (US)
Pages (from-to)1649-1664
Number of pages16
JournalAtmospheric Chemistry and Physics
Volume19
Issue number3
DOIs
StatePublished - Feb 8 2019

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Physical properties of secondary photochemical aerosol from OH oxidation of a cyclic siloxane'. Together they form a unique fingerprint.

Cite this