TY - JOUR
T1 - Phytohormones and shoot growth in a three-generation hybrid poplar family
AU - Pearce, David W.
AU - Rood, Stewart B.
AU - Wu, Rongling
PY - 2004/2
Y1 - 2004/2
N2 - Hybrid vigor for secondary growth in poplar has been linked with increased gibberellin (GA) concentration in cambial tissue, but the relationship between concentrations of GAs and hybrid vigor of primary growth has not been investigated. We explored associations between concentrations of GAs, abscisic acid (ABA) and indoleacetic acid (IAA) and shoot extension in a hybrid family of Populus deltoides Bartr. ex Marsh. (Clone ILL-129) and P. trichocarpa Torr. & Gray (Clone 93-968) and two F1 and 67 F2 genotypes. Rapidly elongating subapical internodes from shoots of 4-year-old clonal saplings were selected for hormone analysis. The F1 hybrids displayed heterosis (hybrid vigor) for primary growth as a result of the complementation of dominance for increased internode length from the P. trichocarpa parent and dominance for increased diameter from the P. deltoides parent. Internodes from the faster-elongating shoots of the P. trichocarpa parent had a fourfold higher concentration of bioactive GA1 and higher concentrations of GA20, GA44, GA29 and GA8 than the P. deltoides parent. However, the two fast-growing F1 hybrids had low concentrations of all five GAs, with concentrations similar to those of the slower-elongating P. deltoides parent. Concentrations of ABA and IAA were correlated with GA concentrations and there was thus no evidence of a consistent promoting or inhibiting effect of ABA or IAA within the F1 family. These results indicate that heterosis for internode growth was not primarily regulated by hormone concentration. The segregating population of F2 hybrids was analyzed to assess the possible utility of hormone screening as a selection tool. The internodes of most of the F2 hybrids were smaller than those of their F 1 parents and the larger P. trichocarpa parent. Among the F 2 hybrids, mature internode length varied fourfold, and was correlated with lengths of young, subapical internodes from which hormones were analyzed. In these internodes, GA1 concentrations were negatively correlated with length (r = 0.41), diameter (0.33) and mass (0.50). Indoleacetic acid concentration was negatively correlated only with diameter (r = 0.37) and positively correlated with GA1 (r = 0.46), whereas ABA concentration was not correlated with any parameter. Thus, in the F2 population, variation in hormone concentration was not primarily responsible for the variation in shoot growth, indicating that selection for individuals with high GA concentration may not be an effective strategy for identifying vigorous hybrid genotypes.
AB - Hybrid vigor for secondary growth in poplar has been linked with increased gibberellin (GA) concentration in cambial tissue, but the relationship between concentrations of GAs and hybrid vigor of primary growth has not been investigated. We explored associations between concentrations of GAs, abscisic acid (ABA) and indoleacetic acid (IAA) and shoot extension in a hybrid family of Populus deltoides Bartr. ex Marsh. (Clone ILL-129) and P. trichocarpa Torr. & Gray (Clone 93-968) and two F1 and 67 F2 genotypes. Rapidly elongating subapical internodes from shoots of 4-year-old clonal saplings were selected for hormone analysis. The F1 hybrids displayed heterosis (hybrid vigor) for primary growth as a result of the complementation of dominance for increased internode length from the P. trichocarpa parent and dominance for increased diameter from the P. deltoides parent. Internodes from the faster-elongating shoots of the P. trichocarpa parent had a fourfold higher concentration of bioactive GA1 and higher concentrations of GA20, GA44, GA29 and GA8 than the P. deltoides parent. However, the two fast-growing F1 hybrids had low concentrations of all five GAs, with concentrations similar to those of the slower-elongating P. deltoides parent. Concentrations of ABA and IAA were correlated with GA concentrations and there was thus no evidence of a consistent promoting or inhibiting effect of ABA or IAA within the F1 family. These results indicate that heterosis for internode growth was not primarily regulated by hormone concentration. The segregating population of F2 hybrids was analyzed to assess the possible utility of hormone screening as a selection tool. The internodes of most of the F2 hybrids were smaller than those of their F 1 parents and the larger P. trichocarpa parent. Among the F 2 hybrids, mature internode length varied fourfold, and was correlated with lengths of young, subapical internodes from which hormones were analyzed. In these internodes, GA1 concentrations were negatively correlated with length (r = 0.41), diameter (0.33) and mass (0.50). Indoleacetic acid concentration was negatively correlated only with diameter (r = 0.37) and positively correlated with GA1 (r = 0.46), whereas ABA concentration was not correlated with any parameter. Thus, in the F2 population, variation in hormone concentration was not primarily responsible for the variation in shoot growth, indicating that selection for individuals with high GA concentration may not be an effective strategy for identifying vigorous hybrid genotypes.
UR - http://www.scopus.com/inward/record.url?scp=1542380886&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1542380886&partnerID=8YFLogxK
U2 - 10.1093/treephys/24.2.217
DO - 10.1093/treephys/24.2.217
M3 - Article
C2 - 14676037
AN - SCOPUS:1542380886
SN - 0829-318X
VL - 24
SP - 217
EP - 224
JO - Tree Physiology
JF - Tree Physiology
IS - 2
ER -