TY - JOUR
T1 - Picosecond Time-Resolved Fluorescence from Detergent-Free Photosystem I Particles
AU - Wittmershaus, Bruce P.
AU - Berns, Donald S.
AU - Huang, Cinnia
PY - 1987
Y1 - 1987
N2 - Picosecond time-resolved fluorescence measurements have been taken on a detergent-free P700-enriched complex at room temperature isolated from the blue-green alga Phormidium luridum with a chlorophyll a to reaction center ratio of 100. Emission at greater than 665 nm is characterized by two exponential-decay components. A fast component, which dominates the initial decay with an average lifetime of 16 ps and 87% amplitude, is attributed to excitations in the core antenna chlorophyll-proteins, which are rapidly trapped by the primary electron donor, P700. A second component, with an average lifetime of 106 ps and 13% amplitude, is attributed to the peripheral antenna proteins. For 532-nm, 30-ps pulse excitation the results are virtually independent of fluence in the range of 2 × 1012 to 4 × 1016 photons/cm2 and the oxidation state of P700. Addition of sodium dodecyl sulfate to 0.1% causes the second component's lifetime to increase by an average of a factor of 2.5. Only minor changes are observed in the first component's lifetime and the relative amplitudes of the two components. Two fractions isolated from the detergent-treated samples have also been examined. Our results indicate that excitation energy transfer within photosystem I is very efficient and that the excitation kinetics of the antennae may be limited by the trapping rate of P700 or strongly affected by the heterogeneity of the antennae.
AB - Picosecond time-resolved fluorescence measurements have been taken on a detergent-free P700-enriched complex at room temperature isolated from the blue-green alga Phormidium luridum with a chlorophyll a to reaction center ratio of 100. Emission at greater than 665 nm is characterized by two exponential-decay components. A fast component, which dominates the initial decay with an average lifetime of 16 ps and 87% amplitude, is attributed to excitations in the core antenna chlorophyll-proteins, which are rapidly trapped by the primary electron donor, P700. A second component, with an average lifetime of 106 ps and 13% amplitude, is attributed to the peripheral antenna proteins. For 532-nm, 30-ps pulse excitation the results are virtually independent of fluence in the range of 2 × 1012 to 4 × 1016 photons/cm2 and the oxidation state of P700. Addition of sodium dodecyl sulfate to 0.1% causes the second component's lifetime to increase by an average of a factor of 2.5. Only minor changes are observed in the first component's lifetime and the relative amplitudes of the two components. Two fractions isolated from the detergent-treated samples have also been examined. Our results indicate that excitation energy transfer within photosystem I is very efficient and that the excitation kinetics of the antennae may be limited by the trapping rate of P700 or strongly affected by the heterogeneity of the antennae.
UR - http://www.scopus.com/inward/record.url?scp=0003081403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0003081403&partnerID=8YFLogxK
U2 - 10.1016/S0006-3495(87)83276-9
DO - 10.1016/S0006-3495(87)83276-9
M3 - Article
AN - SCOPUS:0003081403
SN - 0006-3495
VL - 52
SP - 829
EP - 836
JO - Biophysical journal
JF - Biophysical journal
IS - 5
ER -