Abstract
Sn-doped (Na0.5K0.5)NbO3 (Sn-NKN) ceramics fired under various oxygen partial pressure (pO2) conditions have been investigated and discussed in terms of bulk piezoelectric and dielectric properties. X-ray diffraction measurements and Rayleigh analysis indicate that the substitution site of the Sn cations depend on the pO2 atmosphere in the firing process. For pO2 higher than 1.0 ' 10%10 atm, Sn cations mainly substitute as Sn4+ at the B-site of perovskite NKN, whereas Sn2+ A-site substitution is favored under a low-pO2 atmosphere. Low-pO2 fired Sn-NKN ceramics exhibit higher relative permittivity, Curie temperature, and piezoelectric coefficient (d33). Sn 2+ at A-site acts as a donor and reduces the p-type carrier concentrations that result from an electronic compensation of metal vacancies created through the high volatility of Na and K suboxides. The higher piezoelectricity and resistivity in low-pO2 fired Sn-NKN ceramics make this material suitable for base-metal cofired devices such as Ni-innerelectrode multilayer capacitors and actuators.
| Original language | English (US) |
|---|---|
| Article number | 011501 |
| Journal | Japanese Journal of Applied Physics |
| Volume | 53 |
| Issue number | 1 |
| DOIs | |
| State | Published - Jan 2014 |
All Science Journal Classification (ASJC) codes
- General Engineering
- General Physics and Astronomy