TY - JOUR
T1 - Pitavastatin alters the expression of thrombotic and fibrinolytic proteins in human vascular cells
AU - Markle, Ronald A.
AU - Han, Jihong
AU - Summers, Barbara D.
AU - Yokoyama, Toru
AU - Hajjar, Katherine A.
AU - Hajjar, David P.
AU - Gotto, Antonio M.
AU - Nicholson, Andrew C.
PY - 2003/9/1
Y1 - 2003/9/1
N2 - In addition to lowering blood lipids, clinical benefits of 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A; EC 1.1.1.34) reductase inhibitors may derive from altered vascular function favoring fibrinolysis over thrombosis. We examined effects of pitavastatin (NK-104), a relatively novel and long acting statin, on expression of tissue factor (TF) in human monocytes (U-937), plasminogen activator inhibitor-1 (PAI-1), and tissue-type plasminogen activator (t-PA) in human aortic smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC). In monocytes, pitavastatin reduced expression of TF protein induced by lipopolysaccharide (LPS) and oxidized low-density lipoprotein (OxLDL). Similarly, pitavastatin also reduced expression of TF mRNA induced by LPS. Pitavastatin reduced PAI-1 antigen released from HUVEC under basal, OxLDL-, or tumor necrosis factor-alpha (TNF-α)-stimulated conditions. Reductions of PAI-1 mRNA expression correlated with decreased PAI-1 antigen secretion and PAI-1 activity as assessed by fibrin-agarose zymography. In addition, pitavastatin decreased PAI-1 antigen released from OxLDL-treated and untreated SMC. Conversely, pitavastatin enhanced t-PA mRNA expression and t-PA antigen secretion in untreated OxLDL-, and TNF-α-treated HUVEC and untreated SMC. Finally, pitavastatin increased t-PA activity as assessed by fibrin-agarose zymography. Our findings demonstrate that pitavastatin may alter arterial homeostasis favoring fibrinolysis over thrombosis, thereby reducing risk for thrombi at sites of unstable plaques.
AB - In addition to lowering blood lipids, clinical benefits of 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A; EC 1.1.1.34) reductase inhibitors may derive from altered vascular function favoring fibrinolysis over thrombosis. We examined effects of pitavastatin (NK-104), a relatively novel and long acting statin, on expression of tissue factor (TF) in human monocytes (U-937), plasminogen activator inhibitor-1 (PAI-1), and tissue-type plasminogen activator (t-PA) in human aortic smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC). In monocytes, pitavastatin reduced expression of TF protein induced by lipopolysaccharide (LPS) and oxidized low-density lipoprotein (OxLDL). Similarly, pitavastatin also reduced expression of TF mRNA induced by LPS. Pitavastatin reduced PAI-1 antigen released from HUVEC under basal, OxLDL-, or tumor necrosis factor-alpha (TNF-α)-stimulated conditions. Reductions of PAI-1 mRNA expression correlated with decreased PAI-1 antigen secretion and PAI-1 activity as assessed by fibrin-agarose zymography. In addition, pitavastatin decreased PAI-1 antigen released from OxLDL-treated and untreated SMC. Conversely, pitavastatin enhanced t-PA mRNA expression and t-PA antigen secretion in untreated OxLDL-, and TNF-α-treated HUVEC and untreated SMC. Finally, pitavastatin increased t-PA activity as assessed by fibrin-agarose zymography. Our findings demonstrate that pitavastatin may alter arterial homeostasis favoring fibrinolysis over thrombosis, thereby reducing risk for thrombi at sites of unstable plaques.
UR - http://www.scopus.com/inward/record.url?scp=0041319490&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0041319490&partnerID=8YFLogxK
U2 - 10.1002/jcb.10602
DO - 10.1002/jcb.10602
M3 - Article
C2 - 12938153
AN - SCOPUS:0041319490
SN - 0730-2312
VL - 90
SP - 23
EP - 32
JO - Journal of cellular biochemistry
JF - Journal of cellular biochemistry
IS - 1
ER -