Planet occurrence within 0.25AU of solar-type stars from Kepler

Andrew W. Howard, Geoffrey W. Marcy, Stephen T. Bryson, Jon M. Jenkins, Jason F. Rowe, Natalie M. Batalha, William J. Borucki, David G. Koch, Edward W. Dunham, Thomas N. Gautier, Jeffrey Van Cleve, William D. Cochran, David W. Latham, Jack J. Lissauer, Guillermo Torres, Timothy M. Brown, Ronald L. Gilliland, Lars A. Buchhave, Douglas A. Caldwell, Jorgen Christensen-DalsgaardDavid Ciardi, Francois Fressin, Michael R. Haas, Steve B. Howell, Hans Kjeldsen, Sara Seager, Leslie Rogers, Dimitar D. Sasselov, Jason H. Steffen, Gibor S. Basri, David Charbonneau, Jessie Christiansen, Bruce Clarke, Andrea Dupree, Daniel C. Fabrycky, Debra A. Fischer, Eric B. Ford, Jonathan J. Fortney, Jill Tarter, Forrest R. Girouard, Matthew J. Holman, John Asher Johnson, Todd C. Klaus, Pavel MacHalek, Althea V. Moorhead, Robert C. Morehead, Darin Ragozzine, Peter Tenenbaum, Joseph D. Twicken, Samuel N. Quinn, Howard Isaacson, Avi Shporer, Philip W. Lucas, Lucianne M. Walkowicz, William F. Welsh, Alan Boss, Edna Devore, Alan Gould, Jeffrey C. Smith, Robert L. Morris, Andrej Prsa, Timothy D. Morton, Martin Still, Susan E. Thompson, Fergal Mullally, Michael Endl, Phillip J. MacQueen

Research output: Contribution to journalReview articlepeer-review

842 Citations (SciVal)


We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R . For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R /a. We consider first Kepler target stars within the "solar subset" having T eff = 4100-6100K, log g = 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R . We count planets in small domains of R p and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R ) and out to the longest orbital period (50days, 0.25AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = kRR α with kR = 2.9+0.5 - 0.4, α = -1.92 ± 0.11, and R ≡ R p/R . This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2days are extremely rare; for R p > 2 R we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R , in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P 0. For smaller planets, P 0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T eff range of 3600-7100K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R planets in the Kepler field increases with decreasing T eff, with these small planets being seven times more abundant around cool stars (3600-4100K) than the hottest stars in our sample (6600-7100K).

Original languageEnglish (US)
Article number15
JournalAstrophysical Journal, Supplement Series
Issue number2
StatePublished - Aug 2012

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Planet occurrence within 0.25AU of solar-type stars from Kepler'. Together they form a unique fingerprint.

Cite this