TY - JOUR
T1 - Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure
AU - Singbartl, Kai
AU - Forlow, S. Bradley
AU - Ley, Klaus
PY - 2001
Y1 - 2001
N2 - In a neutrophil-dependent model of acute postischemic renal failure (APRF), eliminating or blocking P-selectin reduces postischemic neutrophil infiltration and preserves kidney function. This study was designed to identify the role of platelet vs. endothelial P-selectin in APRF. Using wild-type (wt) and P-selectin-deficient (P-/-) mice, we generated chimeric mice by bone marrow transplantation. Chimeric mice exclusively expressed either platelet (Plt-P) or endothelial P-selectin (EC-P). APRF was induced by bilateral renal ischemia in situ (32 min), followed by reperfusion; 48 h after reperfusion, EC-P had significantly lower creatinine concentrations (twofold over sham) than Plt-P (eightfold over sham). Compared with wt, protection from renal failure in EC-P was similar to that observed in P-/-. Plt-P and EC-P demonstrated similar overall postischemic neutrophil infiltration as measured by renal myeloperoxidase activity. However, Plt-P showed massive neutrophil infiltration into outer and inner medulla, similar to that in wt. EC-P had only patchy, more diffuse neutrophil influx. Our study identifies platelet P-selectin as crucial for postischemic neutrophil recruitment into outer and inner medulla, which is detrimental to the development of APRF. This suggests that novel therapeutic strategies for postischemic organ failure could be aimed at neutrophil-platelet interactions.
AB - In a neutrophil-dependent model of acute postischemic renal failure (APRF), eliminating or blocking P-selectin reduces postischemic neutrophil infiltration and preserves kidney function. This study was designed to identify the role of platelet vs. endothelial P-selectin in APRF. Using wild-type (wt) and P-selectin-deficient (P-/-) mice, we generated chimeric mice by bone marrow transplantation. Chimeric mice exclusively expressed either platelet (Plt-P) or endothelial P-selectin (EC-P). APRF was induced by bilateral renal ischemia in situ (32 min), followed by reperfusion; 48 h after reperfusion, EC-P had significantly lower creatinine concentrations (twofold over sham) than Plt-P (eightfold over sham). Compared with wt, protection from renal failure in EC-P was similar to that observed in P-/-. Plt-P and EC-P demonstrated similar overall postischemic neutrophil infiltration as measured by renal myeloperoxidase activity. However, Plt-P showed massive neutrophil infiltration into outer and inner medulla, similar to that in wt. EC-P had only patchy, more diffuse neutrophil influx. Our study identifies platelet P-selectin as crucial for postischemic neutrophil recruitment into outer and inner medulla, which is detrimental to the development of APRF. This suggests that novel therapeutic strategies for postischemic organ failure could be aimed at neutrophil-platelet interactions.
UR - http://www.scopus.com/inward/record.url?scp=0035166834&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035166834&partnerID=8YFLogxK
U2 - 10.1096/fj.01-0199com
DO - 10.1096/fj.01-0199com
M3 - Article
C2 - 11689459
AN - SCOPUS:0035166834
SN - 0892-6638
VL - 15
SP - 2337
EP - 2344
JO - FASEB Journal
JF - FASEB Journal
IS - 13
ER -