TY - JOUR
T1 - Platelet-derived growth factor mediates tight junction redistribution and increases permeability in MDCK cells
AU - Harhaj, Nicole S.
AU - Barber, Alistair J.
AU - Antonetti, David A.
PY - 2002/12/1
Y1 - 2002/12/1
N2 - Increased tissue permeability is a common characteristic of a number of diseases such as pulmonary edema, inflammatory bowel disease, several kidney diseases, diabetic retinopathy, and tumors. We hypothesized that growth factors increase permeability by redistribution of tight junction proteins away from the cell border. To investigate mechanisms of growth factor-mediated permeability, we examined the effect of platelet derived growth factor (PDGF) on Madin-Darby canine kidney (MDCK) cell tight junction protein distribution and on permeability. PDGF altered the cellular distribution of occludin and ZO-1 from the cell border to the cytoplasm and increased permeability to 70 kDa dextran in a concentration-dependent manner. Treatment of MDCK cells with PDGF prior to fixation allowed binding of the lectin concanavalin A to the basement membrane of fixed cells, while binding was prevented in untreated control monolayers, implying that PDGF induced the formation of a paracellular transport pathway. Cell fractionation experiments with PDGF-treated cells revealed a novel occludin-containing low-density, detergent resistant subcellular structure, which increased in the buoyant fractions relative to occludin in the pellet in a time- and concentration-dependent manner. Immunocytochemistry revealed that a pool of internalized occludin co-labels with the early endosome marker, EEA1, suggesting that PDGF may stimulate occludin to enter an endosomal pathway. PDGF may act as a permeabilizing agent by moving tight junction proteins away from the cell border in discrete microdomains, and the effects of PDGF on permeability and tight junction protein distribution may model the regulation of epithelial and endothelial barrier properties by other peptide growth factors.
AB - Increased tissue permeability is a common characteristic of a number of diseases such as pulmonary edema, inflammatory bowel disease, several kidney diseases, diabetic retinopathy, and tumors. We hypothesized that growth factors increase permeability by redistribution of tight junction proteins away from the cell border. To investigate mechanisms of growth factor-mediated permeability, we examined the effect of platelet derived growth factor (PDGF) on Madin-Darby canine kidney (MDCK) cell tight junction protein distribution and on permeability. PDGF altered the cellular distribution of occludin and ZO-1 from the cell border to the cytoplasm and increased permeability to 70 kDa dextran in a concentration-dependent manner. Treatment of MDCK cells with PDGF prior to fixation allowed binding of the lectin concanavalin A to the basement membrane of fixed cells, while binding was prevented in untreated control monolayers, implying that PDGF induced the formation of a paracellular transport pathway. Cell fractionation experiments with PDGF-treated cells revealed a novel occludin-containing low-density, detergent resistant subcellular structure, which increased in the buoyant fractions relative to occludin in the pellet in a time- and concentration-dependent manner. Immunocytochemistry revealed that a pool of internalized occludin co-labels with the early endosome marker, EEA1, suggesting that PDGF may stimulate occludin to enter an endosomal pathway. PDGF may act as a permeabilizing agent by moving tight junction proteins away from the cell border in discrete microdomains, and the effects of PDGF on permeability and tight junction protein distribution may model the regulation of epithelial and endothelial barrier properties by other peptide growth factors.
UR - http://www.scopus.com/inward/record.url?scp=0036888320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036888320&partnerID=8YFLogxK
U2 - 10.1002/jcp.10183
DO - 10.1002/jcp.10183
M3 - Article
C2 - 12384987
AN - SCOPUS:0036888320
SN - 0021-9541
VL - 193
SP - 349
EP - 364
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 3
ER -