TY - JOUR
T1 - Platform tolerant, high encoding capacity dipole array-plate chipless RFID tags
AU - Svanda, Milan
AU - Polivka, Milan
AU - Havlicek, Jaroslav
AU - Machac, Jan
AU - Werner, Douglas H.
N1 - Funding Information:
This work was supported in part by the Czech Science Foundation under Project GA15-08803S (initiation), Project GA17-02760S (analyses and experiments), Project GA17-00607S (simulations), and Project GA19-06049S (fundamental bounds analysis), and in part by the National Science Foundation ASSIST Nanosystems ERC under Award EEC-1160483. The work of M. Polivka was supported by the Fulbright Commission of the Czech Republic.
Publisher Copyright:
© 2013 IEEE.
PY - 2019
Y1 - 2019
N2 - In this paper, we first carry out an in-depth review of the performance parameters of frequency-domain chipless RFID transponders in terms of their spatial density, spectral capacity, and comprehensive encoding capacity (bit/ λ2 /GHz) comprising both spatial and spectral performance, and platform tolerance. Secondly, we theoretically and numerically investigate the recently introduced and promising concept of the platform-tolerant chipless RFID transponder based on a detuned dipole array-plate that provides high encoding capacity. We propose, fabricate and measure a 20-bit transponder consisting of an array of 20 detuned dipoles closely coupled to a 60 × 60 mm2 metallic plate. The radar cross section at the level of -15 dBsm exhibits reliably recognizable minima corresponding to individual dipole resonances. When compared to other published frequency-domain chipless RFID transponders, the encoding capacity reaches 47.4 bit/ λ2 /GHz, which constitutes one of the highest values, while achieving a concurrently high level of radar cross section (RCS) reflection response and platform tolerance performance. The measurements confirm very good performance parameters in the cases when the transponder is attached to various packaging materials, such as cardboard, plastic, wood, metal or a human body phantom. The essential benefits of the presented solution include a very good frequency and amplitude stability in the RCS response, which enables a reliable reading of encoded information (if zero bits are coded). The double layer metallization represents an inherent property of the proposed solution, which is a necessary trade-off for high encoding capacity and contemporary platform tolerance.
AB - In this paper, we first carry out an in-depth review of the performance parameters of frequency-domain chipless RFID transponders in terms of their spatial density, spectral capacity, and comprehensive encoding capacity (bit/ λ2 /GHz) comprising both spatial and spectral performance, and platform tolerance. Secondly, we theoretically and numerically investigate the recently introduced and promising concept of the platform-tolerant chipless RFID transponder based on a detuned dipole array-plate that provides high encoding capacity. We propose, fabricate and measure a 20-bit transponder consisting of an array of 20 detuned dipoles closely coupled to a 60 × 60 mm2 metallic plate. The radar cross section at the level of -15 dBsm exhibits reliably recognizable minima corresponding to individual dipole resonances. When compared to other published frequency-domain chipless RFID transponders, the encoding capacity reaches 47.4 bit/ λ2 /GHz, which constitutes one of the highest values, while achieving a concurrently high level of radar cross section (RCS) reflection response and platform tolerance performance. The measurements confirm very good performance parameters in the cases when the transponder is attached to various packaging materials, such as cardboard, plastic, wood, metal or a human body phantom. The essential benefits of the presented solution include a very good frequency and amplitude stability in the RCS response, which enables a reliable reading of encoded information (if zero bits are coded). The double layer metallization represents an inherent property of the proposed solution, which is a necessary trade-off for high encoding capacity and contemporary platform tolerance.
UR - http://www.scopus.com/inward/record.url?scp=85077819067&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077819067&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2019.2935258
DO - 10.1109/ACCESS.2019.2935258
M3 - Article
AN - SCOPUS:85077819067
SN - 2169-3536
VL - 7
SP - 138707
EP - 138720
JO - IEEE Access
JF - IEEE Access
M1 - 8798483
ER -