TY - GEN
T1 - Playing SNES games with neuroevolution of augmenting topologies
AU - Pham, Son
AU - Zhang, Keyi
AU - Phan, Tung
AU - Ding, Jasper
AU - Dancy, Christopher L.
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Teaching a computer to play video games has generally been seen as a reasonable benchmark for developing new AI techniques. In recent years, extensive research has been completed to develop reinforcement learning (RL) algorithms to play various Atari 2600 games, resulting in new applications of algorithms such as Deep Q-Learning or Policy Gradient that outperform humans. However, games from Super Nintendo Entertainment System (SNES) are far more complicated than Atari 2600 games as many of these state-of-the-art algorithms still struggle to perform on this platform. In this paper, we present a new platform to research algorithms on SNES games and investigate NeuroEvolution of Augmenting Topologies (NEAT) as a possible approach to develop algorithms that outperform humans in SNES games.
AB - Teaching a computer to play video games has generally been seen as a reasonable benchmark for developing new AI techniques. In recent years, extensive research has been completed to develop reinforcement learning (RL) algorithms to play various Atari 2600 games, resulting in new applications of algorithms such as Deep Q-Learning or Policy Gradient that outperform humans. However, games from Super Nintendo Entertainment System (SNES) are far more complicated than Atari 2600 games as many of these state-of-the-art algorithms still struggle to perform on this platform. In this paper, we present a new platform to research algorithms on SNES games and investigate NeuroEvolution of Augmenting Topologies (NEAT) as a possible approach to develop algorithms that outperform humans in SNES games.
UR - http://www.scopus.com/inward/record.url?scp=85060460351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060460351&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85060460351
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 8129
EP - 8130
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -