TY - JOUR
T1 - Pleurotaenium trabecula, a desmid of wetland biofilms
T2 - The extracellular matrix and adhesion mechanisms
AU - Domozych, David S.
AU - Elliott, Leah
AU - Kiemle, Sarah N.
AU - Gretz, Michael R.
PY - 2007/10
Y1 - 2007/10
N2 - Pleurotaenium trabecula (Ehren.) Nägeli is a placoderm desmid that commonly occurs in wetland biofilms of the southeastern Adirondacks (NY, USA). It often displays a distinctive habit whereby the cell remains attached to the substrate via the polar end of one semicell, while the remainder of the cell is suspended in the water column. In this study, we examined the extracellular matrix (ECM) of this alga to elucidate its adhesion mechanisms and postadhesion behavior. The ECM consists of the following: (i) an extracellular polymeric substance (EPS), which includes polyanionic and sulfated polysaccharides; (ii) a thin pectin-containing primary cell wall, which is quickly sloughed off after postcytokinetic semicell expansion; and (iii) a thick secondary cell wall that is perforated with a distinct pore complex. Each pore of this complex possesses an external network of densely aggregated fibrils. Selective solubilization and immunolabeling studies suggest that these fibrillar aggregates or "adhesion centers" (i.e., ACs) contain arabinogalactan protein and are involved in initial adhesion of the cell to a substrate. We propose that postinitial adhesion behavior entails localized secretion of EPS derived from a large pool of EPS-containing vesicles situated in the peripheral cytoplasm. As the EPS absorbs water, hygroscopic pressure breaks the connections between the ACs on the cell wall and substrate and allows a portion of a cell to lift up into the water column.
AB - Pleurotaenium trabecula (Ehren.) Nägeli is a placoderm desmid that commonly occurs in wetland biofilms of the southeastern Adirondacks (NY, USA). It often displays a distinctive habit whereby the cell remains attached to the substrate via the polar end of one semicell, while the remainder of the cell is suspended in the water column. In this study, we examined the extracellular matrix (ECM) of this alga to elucidate its adhesion mechanisms and postadhesion behavior. The ECM consists of the following: (i) an extracellular polymeric substance (EPS), which includes polyanionic and sulfated polysaccharides; (ii) a thin pectin-containing primary cell wall, which is quickly sloughed off after postcytokinetic semicell expansion; and (iii) a thick secondary cell wall that is perforated with a distinct pore complex. Each pore of this complex possesses an external network of densely aggregated fibrils. Selective solubilization and immunolabeling studies suggest that these fibrillar aggregates or "adhesion centers" (i.e., ACs) contain arabinogalactan protein and are involved in initial adhesion of the cell to a substrate. We propose that postinitial adhesion behavior entails localized secretion of EPS derived from a large pool of EPS-containing vesicles situated in the peripheral cytoplasm. As the EPS absorbs water, hygroscopic pressure breaks the connections between the ACs on the cell wall and substrate and allows a portion of a cell to lift up into the water column.
UR - http://www.scopus.com/inward/record.url?scp=34848892112&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34848892112&partnerID=8YFLogxK
U2 - 10.1111/j.1529-8817.2007.00389.x
DO - 10.1111/j.1529-8817.2007.00389.x
M3 - Article
AN - SCOPUS:34848892112
SN - 0022-3646
VL - 43
SP - 1022
EP - 1038
JO - Journal of Phycology
JF - Journal of Phycology
IS - 5
ER -