TY - GEN
T1 - Pointguard
T2 - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
AU - Liu, Hongbin
AU - Jia, Jinyuan
AU - Gong, Neil Zhenqiang
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - 3D point cloud classification has many safety-critical applications such as autonomous driving and robotic grasping. However, several studies showed that it is vulnerable to adversarial attacks. In particular, an attacker can make a classifier predict an incorrect label for a 3D point cloud via carefully modifying, adding, and/or deleting a small number of its points. Randomized smoothing is state-of-the-art technique to build certifiably robust 2D image classifiers. However, when applied to 3D point cloud classification, randomized smoothing can only certify robustness against adversarially modified points. In this work, we propose PointGuard, the first defense that has provable robustness guarantees against adversarially modified, added, and/or deleted points. Specifically, given a 3D point cloud and an arbitrary point cloud classifier, our PointGuard first creates multiple subsampled point clouds, each of which contains a random subset of the points in the original point cloud; then our PointGuard predicts the label of the original point cloud as the majority vote among the labels of the subsampled point clouds predicted by the point cloud classifier. Our first major theoretical contribution is that we show PointGuard provably predicts the same label for a 3D point cloud when the number of adversarially modified, added, and/or deleted points is bounded. Our second major theoretical contribution is that we prove the tightness of our derived bound when no assumptions on the point cloud classifier are made. Moreover, we design an efficient algorithm to compute our certified robustness guarantees. We also empirically evaluate PointGuard on ModelNet40 and ScanNet benchmark datasets.
AB - 3D point cloud classification has many safety-critical applications such as autonomous driving and robotic grasping. However, several studies showed that it is vulnerable to adversarial attacks. In particular, an attacker can make a classifier predict an incorrect label for a 3D point cloud via carefully modifying, adding, and/or deleting a small number of its points. Randomized smoothing is state-of-the-art technique to build certifiably robust 2D image classifiers. However, when applied to 3D point cloud classification, randomized smoothing can only certify robustness against adversarially modified points. In this work, we propose PointGuard, the first defense that has provable robustness guarantees against adversarially modified, added, and/or deleted points. Specifically, given a 3D point cloud and an arbitrary point cloud classifier, our PointGuard first creates multiple subsampled point clouds, each of which contains a random subset of the points in the original point cloud; then our PointGuard predicts the label of the original point cloud as the majority vote among the labels of the subsampled point clouds predicted by the point cloud classifier. Our first major theoretical contribution is that we show PointGuard provably predicts the same label for a 3D point cloud when the number of adversarially modified, added, and/or deleted points is bounded. Our second major theoretical contribution is that we prove the tightness of our derived bound when no assumptions on the point cloud classifier are made. Moreover, we design an efficient algorithm to compute our certified robustness guarantees. We also empirically evaluate PointGuard on ModelNet40 and ScanNet benchmark datasets.
UR - http://www.scopus.com/inward/record.url?scp=85120472982&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120472982&partnerID=8YFLogxK
U2 - 10.1109/CVPR46437.2021.00612
DO - 10.1109/CVPR46437.2021.00612
M3 - Conference contribution
AN - SCOPUS:85120472982
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 6182
EP - 6191
BT - Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021
PB - IEEE Computer Society
Y2 - 19 June 2021 through 25 June 2021
ER -