Poiseuille flow of a non-local non-newtonian fluid with wall slip: A first step in modeling cerebral microaneurysms

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Cerebral aneurysms and microaneurysms are abnormal vascular dilatations with high risk of rupture. An aneurysmal rupture could cause permanent disability and even death. Finding and treating aneurysms before their rupture is very difficult since symptoms can be easily attributed mistakenly to other common brain diseases. Mathematical models could highlight possible mechanisms of aneurysmal development and suggest specialized biomarkers for aneurysms. Existing mathematical models of intracranial aneurysms focus on mechanical interactions between blood flow and arteries. However, these models cannot be applied to microaneurysms since the anatomy and physiology at the length scale of cerebral microcirculation are different. In this paper, we propose a mechanism for the formation of microaneurysms that involves the chemo-mechanical coupling of blood and endothelial and neuroglial cells. We model the blood as a non-local non-Newtonian incompressible fluid and solve analytically the Poiseuille flow of such a fluid through an axi-symmetric circular rigid and impermeable pipe in the presence of wall slip. The spatial derivatives of the proposed generalization of the rate of deformation tensor are expressed using Caputo fractional derivatives. The wall slip is represented by the classic Navier law and a generalization of this law involving fractional derivatives. Numerical simulations suggest that hypertension could contribute to microaneurysmal formation.

Original languageEnglish (US)
Article number9
Pages (from-to)1-20
Number of pages20
JournalFractal and Fractional
Issue number1
StatePublished - 2018

All Science Journal Classification (ASJC) codes

  • Analysis
  • Statistics and Probability
  • Statistical and Nonlinear Physics


Dive into the research topics of 'Poiseuille flow of a non-local non-newtonian fluid with wall slip: A first step in modeling cerebral microaneurysms'. Together they form a unique fingerprint.

Cite this