Polar-fluoropolymer blends for high energy density low loss capacitor applications

Shan Wu, Minren Lin, David S.G. Lu, Qiming Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Besides energy density, the electric loss at high electric fields is another major concern for many capacitor applications. This paper presents recent works in developing high energy density low loss polymer capacitors. In order to reduce the dielectric loss while maintaining high energy density in poly(vinylidene fluoride-hexafluoropropylene) P(VDF-HFP) and P(VDF-CTFE) (CTFE: Chlorotrifluoroethylene) based polymers, a polymer blend approach was investigated. We show that by blending P(VDF-CTFE) with a proper low loss polymer such as poly(ethylene-chlorotrifluoroethylene) (ECTFE) can lead to marked improvement in the loss of dielectric films. In this study, P(VDF-CTFE) blends films with different wt% of ECTFE have been examined to find a balance between dielectric constant and the loss. In addition, crosslink in the blends has been employed to further improve the dielectric performance of the blends. The results indicate that these blends exhibit an excellent performance: relatively high dielectric constant (- 6-7) and low loss (- 0.01) at 1 kHz. For the crosslink blend films, the high field loss is reduced to below 5% with a discharged energy density 4.3 J/cm3 under a field of 300 MV/m.

Original languageEnglish (US)
Title of host publicationPolymer-Based Materials and Composites - Synthesis, Assembly, Properties and Applications
Pages51-56
Number of pages6
DOIs
StatePublished - 2011
Event2010 MRS Fall Meeting - Boston, MA, United States
Duration: Nov 29 2010Dec 3 2010

Publication series

NameMaterials Research Society Symposium Proceedings
Volume1312
ISSN (Print)0272-9172

Other

Other2010 MRS Fall Meeting
Country/TerritoryUnited States
CityBoston, MA
Period11/29/1012/3/10

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Polar-fluoropolymer blends for high energy density low loss capacitor applications'. Together they form a unique fingerprint.

Cite this