Polarimetric signatures above the melting layer in winter storms: An observational and modeling study

Jelena Andrić, Matthew R. Kumjian, DušSan S. Zrnić, Jerry M. Straka, Valery M. Melnikov

Research output: Contribution to journalArticlepeer-review

123 Scopus citations

Abstract

Polarimetric radar observations above the melting layer in winter storms reveal enhanced differential reflectivity ZDR and specific differential phase shift KDP, collocated with reduced copolar correlation coefficient ρhv; these signatures often appear as isolated "pockets."High-resolutionRHIs and vertical profiles of polarimetric variables were analyzed for a winter storm that occurred in Oklahoma on 27 January 2009, observed with the polarimetric Weather Surveillance Radar-1988 Doppler (WSR-88D) in Norman. The ZDR maximum and ρhv minimum are located within the temperature range between -10° and -15°C, whereas the KDP maximum is located just below the ZDR maximum. These signatures are coincident with reflectivity factor ZH that increases toward the ground. A simple kinematical, one-dimensional, twomoment bulk microphysical model is developed and coupled with electromagnetic scattering calculations to explain the nature of the observed polarimetric signature. The microphysics model includes nucleation, deposition, and aggregation and considers only ice-phase hydrometeors. Vertical profiles of the polarimetric radar variables (ZH, ZDR, KDP, and ρhv) were calculated using the output from the microphysical model. The base model run reproduces the general profile and magnitude of the observed ZH and ρhv and the correct shape (but not magnitude) of ZDR and KDP. Several sensitivity experiments were conducted to determine if the modeled signatures of all variables can match the observed ones. The model was incapable of matching both the observed magnitude and shape of all polarimetric variables, however. This implies that some processes not included in the model (such as secondary ice generation) are important in producing the signature.

Original languageEnglish (US)
Pages (from-to)682-700
Number of pages19
JournalJournal of Applied Meteorology and Climatology
Volume52
Issue number3
DOIs
StatePublished - Mar 2013

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Polarimetric signatures above the melting layer in winter storms: An observational and modeling study'. Together they form a unique fingerprint.

Cite this