Poliovirus RNA-dependent RNA polymerase (3D(pol)) is sufficient for template switching in vitro

Jamie J. Arnold, Craig E. Cameron

Research output: Contribution to journalArticlepeer-review

98 Scopus citations

Abstract

We have performed a systematic, quantitative analysis of the kinetics of nucleotide incorporation catalyzed by poliovirus RNA-dependent RNA polymerase, 3D(pol). Homopolymeric primer/templates of defined length were used to evaluate the contribution of primer and template length and sequence to the efficiency of nucleotide incorporation without the complication of RNA structure. Interestingly, thermodynamic stability of the duplex region of these primer/templates was more important for efficient nucleotide incorporation than either primer or template length. Surprisingly, products greater than unit length formed in all reactions regardless of length or sequence. Neither a distributive nor a processive slippage mechanism could be used to explain completely the formation of long products. Rather, the data were consistent with a template-switching mechanism. All of the nucleotide could be polymerized during the course of the reaction. However, very few primers could be extended, suggesting an inverse correlation between the efficiency of primer utilization and that of nucleotide incorporation. Therefore, the greatest fraction of incorporated nucleotide derives from a small fraction of enzyme when radioactive nucleotide and homopolymeric primer/template substrates are employed. The impact of these results on mechanistic studies of 3D(pol)-catalyzed nucleotide incorporation and RNA recombination are discussed.

Original languageEnglish (US)
Pages (from-to)2706-2716
Number of pages11
JournalJournal of Biological Chemistry
Volume274
Issue number5
DOIs
StatePublished - Jan 29 1999

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Poliovirus RNA-dependent RNA polymerase (3D(pol)) is sufficient for template switching in vitro'. Together they form a unique fingerprint.

Cite this