Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem

Research output: Contribution to journalArticlepeer-review

83 Scopus citations


We give polynomial-time quantum algorithms for three problems from computational algebraic number theory. The first is Pell's equation. Given a positive nonsquare integer d, Pell's equation is x2 - dy2 = 1 and the goal is to find its integer solutions. Factoring integers reduces to finding integer solutions of Pell's equation, but a reduction in the other direction is not known and appears more difficult. The second problem we solve is the principal ideal problem in real quadratic number fields. This problem, which is at least as hard as solving Pell's equation, is the one-way function underlying the Buchmann - Williams key exchange system, which is therefore broken by our quantum algorithm. Finally, assuming the generalized Riemann hypothesis, this algorithm can be used to compute the class group of a real quadratic number field.

Original languageEnglish (US)
Article number1206039
JournalJournal of the ACM
Issue number1
StatePublished - Mar 1 2007

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Information Systems
  • Hardware and Architecture
  • Artificial Intelligence


Dive into the research topics of 'Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem'. Together they form a unique fingerprint.

Cite this