Polyphosphazenes containing vitamin substituents: Synthesis, characterization, and hydrolytic sensitivity

Nicole L. Morozowich, Arlin L. Weikel, Jessica L. Nichol, Chen Chen, Lakshmi S. Nair, Cato T. Laurencin, Harry R. Allcock

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Novel polyphosphazenes containing various vitamin substituents were synthesized and characterized, and their sensitivity to hydrolysis and pH behavior was investigated. Vitamins L1, E, and B6 were used because of their biocompatibility, their importance in a variety of biological functions, and their potential to increase the mechanical properties of the resulting polymers, thus making these materials promising candidates for hard tissue engineering scaffolds. Chlorine replacement reactions were carried out initially with the small molecule, hexachlorocyclotriphosphazene, as a model for high polymeric poly(dichlorophosphazene). Because of the steric hindrance generated by vitamin E as a substituent, co-substituted polymers were synthesized with either glycine ethyl ester or sodium ethoxide as the second substituent. Similarly, vitamin B6 was co-substituted with glycine ethyl ester or phenylalanine ethyl ester to favor biodegradability. To prevent cross-linking via multifunctional reagents, the hydroxyl groups in vitamin B6 were protected and subsequently deprotected under acidic conditions after side group linkage to the polymer backbone. The glass transition temperatures of the polymers ranged from -24.0 to 44.0 °C. Hydrolysis of the polymers in deionized water at 37 °C was used as an initial estimate of their hydrolytic sensitivity. Different solid polymers underwent 10-100% weight loss in 6 weeks with the generation of a broad pH range of ∼2.5-9. The weight loss during preliminary hydrolysis experiments was attributed to cleavage of the polymer backbone and/or the polymers becoming soluble in the aqueous media during hydrolytic reactions.

Original languageEnglish (US)
Pages (from-to)1355-1364
Number of pages10
JournalMacromolecules
Volume44
Issue number6
DOIs
StatePublished - Mar 22 2011

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Polyphosphazenes containing vitamin substituents: Synthesis, characterization, and hydrolytic sensitivity'. Together they form a unique fingerprint.

Cite this