Abstract
A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s -1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs.
Original language | English (US) |
---|---|
Pages (from-to) | 379-384 |
Number of pages | 6 |
Journal | Journal of Power Sources |
Volume | 269 |
DOIs | |
State | Published - Dec 10 2014 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering