TY - JOUR
T1 - Population and genetic outcomes 20 years after reintroducing bobcats (Lynx rufus) to Cumberland Island, Georgia USA
AU - Diefenbach, Duane
AU - Hansen, Leslie
AU - Bohling, Justin
AU - Miller-Butterworth, Cassandra
N1 - Publisher Copyright:
& Sons Ltd.
PY - 2015/11
Y1 - 2015/11
N2 - In 1988-1989, 32 bobcats Lynx rufus were reintroduced to Cumberland Island (CUIS), Georgia, USA, from which they had previously been extirpated. They were monitored intensively for 3 years immediately post-reintroduction, but no estimation of the size or genetic diversity of the population had been conducted in over 20 years since reintroduction. We returned to CUIS in 2012 to estimate abundance and effective population size of the present-day population, as well as to quantify genetic diversity and inbreeding. We amplified 12 nuclear microsatellite loci from DNA isolated from scats to establish genetic profiles to identify individuals. We used spatially explicit capture-recapture population estimation to estimate abundance. From nine unique genetic profiles, we estimate a population size of 14.4 (SE = 3.052) bobcats, with an effective population size (Ne) of 5-8 breeding individuals. This is consistent with predictions of a population viability analysis conducted at the time of reintroduction, which estimated the population would average 12-13 bobcats after 10 years. We identified several pairs of related bobcats (parent-offspring and full siblings), but ~75% of the pairwise comparisons were typical of unrelated individuals, and only one individual appeared inbred. Despite the small population size and other indications that it has likely experienced a genetic bottleneck, levels of genetic diversity in the CUIS bobcat population remain high compared to other mammalian carnivores. The reintroduction of bobcats to CUIS provides an opportunity to study changes in genetic diversity in an insular population without risk to this common species. Opportunities for natural immigration to the island are limited; therefore, continued monitoring and supplemental bobcat reintroductions could be used to evaluate the effect of different management strategies to maintain genetic diversity and population viability. The successful reintroduction and maintenance of a bobcat population on CUIS illustrates the suitability of translocation as a management tool for re-establishing felid populations.
AB - In 1988-1989, 32 bobcats Lynx rufus were reintroduced to Cumberland Island (CUIS), Georgia, USA, from which they had previously been extirpated. They were monitored intensively for 3 years immediately post-reintroduction, but no estimation of the size or genetic diversity of the population had been conducted in over 20 years since reintroduction. We returned to CUIS in 2012 to estimate abundance and effective population size of the present-day population, as well as to quantify genetic diversity and inbreeding. We amplified 12 nuclear microsatellite loci from DNA isolated from scats to establish genetic profiles to identify individuals. We used spatially explicit capture-recapture population estimation to estimate abundance. From nine unique genetic profiles, we estimate a population size of 14.4 (SE = 3.052) bobcats, with an effective population size (Ne) of 5-8 breeding individuals. This is consistent with predictions of a population viability analysis conducted at the time of reintroduction, which estimated the population would average 12-13 bobcats after 10 years. We identified several pairs of related bobcats (parent-offspring and full siblings), but ~75% of the pairwise comparisons were typical of unrelated individuals, and only one individual appeared inbred. Despite the small population size and other indications that it has likely experienced a genetic bottleneck, levels of genetic diversity in the CUIS bobcat population remain high compared to other mammalian carnivores. The reintroduction of bobcats to CUIS provides an opportunity to study changes in genetic diversity in an insular population without risk to this common species. Opportunities for natural immigration to the island are limited; therefore, continued monitoring and supplemental bobcat reintroductions could be used to evaluate the effect of different management strategies to maintain genetic diversity and population viability. The successful reintroduction and maintenance of a bobcat population on CUIS illustrates the suitability of translocation as a management tool for re-establishing felid populations.
UR - http://www.scopus.com/inward/record.url?scp=84946485809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84946485809&partnerID=8YFLogxK
U2 - 10.1002/ece3.1750
DO - 10.1002/ece3.1750
M3 - Article
C2 - 26640668
AN - SCOPUS:84946485809
SN - 2045-7758
VL - 5
SP - 4885
EP - 4895
JO - Ecology and Evolution
JF - Ecology and Evolution
IS - 21
ER -