Pore-scale simulation of dispersion in porous media

G. Garmeh, R. T. Johns, L. W. Lake

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


Mixing of miscible gas with oil in a reservoir decreases the effective strength of the gas, which can adversely affect miscibility and recovery efficiency. The level of true mixing that occurs in a reservoir, however, is widely debated and often ignored in reservoir simulation in which very large grid blocks are used. Large grid blocks create artificially large mixing that can cause errors in predicted oil recovery. This paper examines mixing that occurs in porous media by solving for single-phase flow in a connected network of pores. We differentiate between true mixing that can reduce the effective strength of a miscible gas or surfactant from apparent mixing caused by convective spreading. This work differs from network models in that we directly solve the Navier-Stokes equation and the convection-diffusion equation to determine the velocities and concentrations at any location within the pores. Flow in series and layered heterogeneous porous media are modeled through use of many grains in different arrangements. We consider slug, continuous, and partial injection as well as echo tests (single-well tracer tests) and transmission tests (interwell tracer tests). We match the concentrations from the pore-scale simulations to the analytical convection-dispersion solution that includes both transverse- and longitudinal-dispersion coefficients. The results show that for flow in series and in layers, echo- and transmission-longitudinal dispersivities become equal and reach an asymptotic value if complete mixing over a cross section perpendicular to flow has occurred. In practice, the asymptotic value of dispersivity may never be reached, depending on pattern-scale heterogeneity and well spacing. Transverse-dispersion coefficients also are scale dependent, but they decrease with traveled distance. We further demonstrate that the classical Perkins-Johnston relationship between longitudinal-dispersion coefficient and fluid velocity is obtained. We conclude that echo dispersivities are reliable indicators of true mixing in porous media.

Original languageEnglish (US)
Pages (from-to)559-567
Number of pages9
JournalSPE Journal
Issue number4
StatePublished - Dec 2009

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Geotechnical Engineering and Engineering Geology


Dive into the research topics of 'Pore-scale simulation of dispersion in porous media'. Together they form a unique fingerprint.

Cite this