Pore structures of fly ashes activated by Ca(OH)2 and CaSO4 · 2H2O

Weiping Ma, Chunling Liu, Paul W. Brown, Sridhar Komarneni

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

The nature of the pore structure which develops when low-lime fly ash reacts with Ca(OH)2 and CaSO4 · 2H2O under hydrothermal treatment has been investigated. The nitrogen adsorption-desorption isotherms of hydrothermally treated samples of fly ash and activated fly ash were analyzed. X-ray diffractometry was used to characterize the hydration products and SEM was used to analyze microstructure. The shapes and sizes of the hysteresis loops of isotherms and the pore size distribution data indicated that the pore structures of samples were comprised primarily of wedge-shaped pores with open ends. The surface area obtained when fly ash reacted with Ca(OH)2 under hydrothermal treatment at 100 °C was 33.4 m2/g, while that of untreated fly ash was only 1.3 m2/g. The surface area of fly ash after reaction with CaSO4 · 2H2O was 2.9 m2/g. For fly ash reacted with Ca(OH)2, the volumes of the pores with radii of 19Åincreased with increasing temperature of thermal treatment. Depending on the temperature, calcium silicate hydrate, calcite and anhydrite formed. Because the pozzolanic reaction produces calcium silicate hydrate with a very large surface area, it controls the pore structures in which fly ash is activated by Ca(OH)2. Therefore, a realistic assessment of the pore structure of activated fly ash is needed to understand those important physical and mechanical properties of concrete.

Original languageEnglish (US)
Pages (from-to)417-425
Number of pages9
JournalCement and Concrete Research
Volume25
Issue number2
DOIs
StatePublished - Feb 1995

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • General Materials Science

Fingerprint

Dive into the research topics of 'Pore structures of fly ashes activated by Ca(OH)2 and CaSO4 · 2H2O'. Together they form a unique fingerprint.

Cite this