The scalability of cell aggregates such as spheroids, strands, and rings has been restricted by diffusion of nutrient and oxygen into their core. In this study, we introduce a novel concept in generating tissue building blocks with micropores, which represents an alternative solution for vascularization. Sodium alginate porogens were mixed with human adipose-derived stem cells, and loaded into tubular alginate capsules, followed by de-crosslinking of the capsules. The resultant cellular structure exhibited a porous morphology and formed cell aggregates in the form of strands, called 'porous tissue strands (pTSs).' Three-dimensional reconstructions show that pTSs were able to maintain ∼25% porosity with a high pore interconnectivity (∼85%) for 3 weeks. Owing to the porous structure, pTSs showed up-regulated cell viability and proliferation rate as compared to solid counterparts throughout the culture period. pTSs also demonstrated self-assembly capability through tissue fusion yielding larger-scale patches. In this paper, chondrogenesis and osteogenesis of pTSs were also demonstrated, where the porous microstructure up-regulated both chondrogenic and osteogenic functionalities indicated by cartilage- and bone-specific immunostaining, quantitative biochemical assessment and gene expression. These findings indicated the functionality of pTSs, which possessed controllable porosity and self-assembly capability, and had great potential to be utilized as tissue building blocks in distinct applications such as cartilage and bone regeneration.

Original languageEnglish (US)
Article number015009
Issue number1
StatePublished - Jan 2019

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biochemistry
  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Porous tissue strands: Avascular building blocks for scalable tissue fabrication'. Together they form a unique fingerprint.

Cite this