TY - JOUR
T1 - Possible large near-trench slip during the 2011Mw 9.0 off the Pacific coast of Tohoku Earthquake
AU - Lay, Thorne
AU - Ammon, Charles J.
AU - Kanamori, Hiroo
AU - Xue, Lian
AU - Kim, Marina J.
N1 - Funding Information:
Acknowledgments. This work made use of GMT, SAC and Coulomb 3 software. The IRIS DMS data center was used to access the FDSN seismic data. This work was supported by NSF grant EAR0635570 and USGS Award Number 05HQGR0174. We thank the editor and two anonymous reviewers for their constructive reviews of the manuscript.
PY - 2011
Y1 - 2011
N2 - The 11 March 2011 off the Pacific coast of Tohoku (Mw 9.0) Earthquake ruptured a 200 km wide megathrust fault, with average displacements of ∼ 15-20 m. Early estimates of the co-seismic slip distribution using seismic, geodetic and tsunami observations vary significantly in the placement of slip, particularly in the vicinity of the trench. All methods have difficulty resolving the up-dip extent of rupture; onshore geodetic inversions have limited sensitivity to slip far offshore, seismic inversions have instabilities in seismic moment estimation as subfault segments get very shallow, and tsunami inversions average over the total region of ocean bottom uplift. Seismic wave estimates depend strongly on the velocity structure used in the model, which affects both seismic moment estimation and inferred mapping to slip. We explore these ideas using a least-squares inversion of teleseismic F-waves that yields surprisingly large fault displacements (up to ∼60 m) at shallow depth under a protrusion of the upper plate into the trench. This model provides good prediction of GPS static displacements on Honshu. We emphasize the importance of poorly-constrained rigidity variations with depth for estimating fault displacement near the trench. The possibility of large slip at very shallow depth holds implications for up-dip strain accumulation and tsunamigenic earthquake potential of megathrusts elsewhere.
AB - The 11 March 2011 off the Pacific coast of Tohoku (Mw 9.0) Earthquake ruptured a 200 km wide megathrust fault, with average displacements of ∼ 15-20 m. Early estimates of the co-seismic slip distribution using seismic, geodetic and tsunami observations vary significantly in the placement of slip, particularly in the vicinity of the trench. All methods have difficulty resolving the up-dip extent of rupture; onshore geodetic inversions have limited sensitivity to slip far offshore, seismic inversions have instabilities in seismic moment estimation as subfault segments get very shallow, and tsunami inversions average over the total region of ocean bottom uplift. Seismic wave estimates depend strongly on the velocity structure used in the model, which affects both seismic moment estimation and inferred mapping to slip. We explore these ideas using a least-squares inversion of teleseismic F-waves that yields surprisingly large fault displacements (up to ∼60 m) at shallow depth under a protrusion of the upper plate into the trench. This model provides good prediction of GPS static displacements on Honshu. We emphasize the importance of poorly-constrained rigidity variations with depth for estimating fault displacement near the trench. The possibility of large slip at very shallow depth holds implications for up-dip strain accumulation and tsunamigenic earthquake potential of megathrusts elsewhere.
UR - http://www.scopus.com/inward/record.url?scp=83155165402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=83155165402&partnerID=8YFLogxK
U2 - 10.5047/eps.2011.05.033
DO - 10.5047/eps.2011.05.033
M3 - Article
AN - SCOPUS:83155165402
SN - 1343-8832
VL - 63
SP - 687
EP - 692
JO - Earth, Planets and Space
JF - Earth, Planets and Space
IS - 7
ER -