Possible Role for Tectonics in the Evolving Stability of the Greenland Ice Sheet

R. B. Alley, D. Pollard, B. R. Parizek, S. Anandakrishnan, M. Pourpoint, N. T. Stevens, J. A. MacGregor, K. Christianson, A. Muto, N. Holschuh

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

The history of the Greenland Ice Sheet has been influenced by the geodynamic response to ice sheet fluctuations, and this interaction may help explain past deglaciations under modest climate forcing. We hypothesize that when the Iceland hot spot passed beneath north-central Greenland, it thinned the lithosphere and left anomalous heat likely with partially melted rock; however, it did not break through the crust to supply voluminous flood basalts. Subsequent Plio-Pleistocene glacial-interglacial cycles caused large and rapidly migrating stresses, driving dike formation and other processes that shifted melted rock toward the surface. The resulting increase in surface geothermal flux favored a thinner, faster-responding ice sheet that was more prone to deglaciation. If this hypothesis of control through changes in geothermal flux is correct, then the long-term (10 5 to 10 6  years) trend now is toward lower geothermal flux, but with higher-frequency (≤10 4 to 10 5  years) oscillations linked to glacial-interglacial cycles. Whether the geothermal flux is increasing or decreasing now is not known but is of societal relevance due to its possible impact on ice flow. We infer that projections of the future of the ice sheet and its effect on sea level must integrate geologic and geophysical data as well as glaciological, atmospheric, oceanic, and paleoclimatic information.

Original languageEnglish (US)
Pages (from-to)97-115
Number of pages19
JournalJournal of Geophysical Research: Earth Surface
Volume124
Issue number1
DOIs
StatePublished - Jan 2019

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Earth-Surface Processes

Fingerprint

Dive into the research topics of 'Possible Role for Tectonics in the Evolving Stability of the Greenland Ice Sheet'. Together they form a unique fingerprint.

Cite this