TY - JOUR
T1 - Potassium storage behavior and low-temperature performance of typical carbon anodes in potassium-ion hybrid capacitors enabled by Co-intercalation graphite chemistry
AU - Zhang, Hongfei
AU - Zhao, Jinhui
AU - Ren, Chongchong
AU - King, Stephen
AU - Sun, Hongtao
AU - Zhang, Xin
AU - Wang, Gongkai
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2025/2
Y1 - 2025/2
N2 - Carbon materials are widely explored as anodes for potassium-ion storage, yet the slow K+ desolvation process in electrolyte at low temperatures presents a kinetic limitation that impedes reliable operation in specific conditions. In this work, we systematically investigate the potassium storage behavior of four typical carbon materials—graphite, hard carbon, activated carbon, and graphene—in a 1 M KFSI-Diglyme electrolyte, highlighting a co-intercalation approach that significantly reduces the desolvation energy barrier. The formation of ternary graphite intercalation compounds (t-GICs) through co-intercalation in graphite introduces weak interlayer interactions between the graphite layers and solvated K+, which accelerate K+ diffusion in the anode, thereby enhancing reaction kinetics. This unique mechanism enables the graphite anode to deliver remarkable rate performance (98 mAh g−1 at 0.05 A g−1 and 76 mAh g−1 at 1 A g−1) even at −20 °C. Furthermore, potassium-ion hybrid capacitors (PICs) using the graphite anode achieve impressive cycling stability, with 88 % capacity retention after 2000 cycles at 2 A g−1 and a high power density of 11.1 kW kg−1 (57 Wh kg−1) at −20 °C. These findings provide key insights into the design of robust potassium-ion storage devices capable of sustaining high performance in low-temperature environments.
AB - Carbon materials are widely explored as anodes for potassium-ion storage, yet the slow K+ desolvation process in electrolyte at low temperatures presents a kinetic limitation that impedes reliable operation in specific conditions. In this work, we systematically investigate the potassium storage behavior of four typical carbon materials—graphite, hard carbon, activated carbon, and graphene—in a 1 M KFSI-Diglyme electrolyte, highlighting a co-intercalation approach that significantly reduces the desolvation energy barrier. The formation of ternary graphite intercalation compounds (t-GICs) through co-intercalation in graphite introduces weak interlayer interactions between the graphite layers and solvated K+, which accelerate K+ diffusion in the anode, thereby enhancing reaction kinetics. This unique mechanism enables the graphite anode to deliver remarkable rate performance (98 mAh g−1 at 0.05 A g−1 and 76 mAh g−1 at 1 A g−1) even at −20 °C. Furthermore, potassium-ion hybrid capacitors (PICs) using the graphite anode achieve impressive cycling stability, with 88 % capacity retention after 2000 cycles at 2 A g−1 and a high power density of 11.1 kW kg−1 (57 Wh kg−1) at −20 °C. These findings provide key insights into the design of robust potassium-ion storage devices capable of sustaining high performance in low-temperature environments.
UR - http://www.scopus.com/inward/record.url?scp=85210415387&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85210415387&partnerID=8YFLogxK
U2 - 10.1016/j.carbon.2024.119868
DO - 10.1016/j.carbon.2024.119868
M3 - Article
AN - SCOPUS:85210415387
SN - 0008-6223
VL - 233
JO - Carbon
JF - Carbon
M1 - 119868
ER -