TY - JOUR
T1 - Potent functional uncoupling between STIM1 and Orai1 by dimeric 2-aminodiphenyl borinate analogs
AU - Hendron, Eunan
AU - Wang, Xizhuo
AU - Zhou, Yandong
AU - Cai, Xiangyu
AU - Goto, Jun Ichi
AU - Mikoshiba, Katsuhiko
AU - Baba, Yoshihiro
AU - Kurosaki, Tomohiro
AU - Wang, Youjun
AU - Gill, Donald L.
N1 - Publisher Copyright:
© 2014 Elsevier Ltd.
PY - 2014
Y1 - 2014
N2 - The coupling of ER Ca2+-sensing STIM proteins and PM Orai Ca2+ entry channels generates "store-operated" Ca2+ signals crucial in controlling responses in many cell types. The dimeric derivative of 2-aminoethoxydiphenyl borinate (2-APB), DPB162-AE, blocks functional coupling between STIM1 and Orai1 with an IC50 (200nM) 100-fold lower than 2-APB. Unlike 2-APB, DPB162-AE does not affect L-type or TRPC channels or Ca2+ pumps at maximal STIM1-Orai1 blocking levels. DPB162-AE blocks STIM1-induced Orai1 or Orai2, but does not block Orai3 or STIM2-mediated effects. We narrowed the DPB162-AE site of action to the STIM-Orai activating region (SOAR) of STIM1. DPB162-AE does not prevent the SOAR-Orai1 interaction but potently blocks SOAR-mediated Orai1 channel activation, yet its action is not as an Orai1 channel pore blocker. Using the SOAR-F394H mutant which prevents both physical and functional coupling to Orai1, we reveal DPB162-AE rapidly restores SOAR-Orai binding but only slowly restores Orai1 channel-mediated Ca2+ entry. With the same SOAR mutant, 2-APB induces rapid physical and functional coupling to Orai1, but channel activation is transient. We infer that the actions of both 2-APB and DPB162-AE are directed toward the STIM1-Orai1 coupling interface. Compared to 2-APB, DPB162-AE is a much more potent and specific STIM1/Orai1 functional uncoupler. DPB162-AE provides an important pharmacological tool and a useful mechanistic probe for the function and coupling between STIM1 and Orai1 channels.
AB - The coupling of ER Ca2+-sensing STIM proteins and PM Orai Ca2+ entry channels generates "store-operated" Ca2+ signals crucial in controlling responses in many cell types. The dimeric derivative of 2-aminoethoxydiphenyl borinate (2-APB), DPB162-AE, blocks functional coupling between STIM1 and Orai1 with an IC50 (200nM) 100-fold lower than 2-APB. Unlike 2-APB, DPB162-AE does not affect L-type or TRPC channels or Ca2+ pumps at maximal STIM1-Orai1 blocking levels. DPB162-AE blocks STIM1-induced Orai1 or Orai2, but does not block Orai3 or STIM2-mediated effects. We narrowed the DPB162-AE site of action to the STIM-Orai activating region (SOAR) of STIM1. DPB162-AE does not prevent the SOAR-Orai1 interaction but potently blocks SOAR-mediated Orai1 channel activation, yet its action is not as an Orai1 channel pore blocker. Using the SOAR-F394H mutant which prevents both physical and functional coupling to Orai1, we reveal DPB162-AE rapidly restores SOAR-Orai binding but only slowly restores Orai1 channel-mediated Ca2+ entry. With the same SOAR mutant, 2-APB induces rapid physical and functional coupling to Orai1, but channel activation is transient. We infer that the actions of both 2-APB and DPB162-AE are directed toward the STIM1-Orai1 coupling interface. Compared to 2-APB, DPB162-AE is a much more potent and specific STIM1/Orai1 functional uncoupler. DPB162-AE provides an important pharmacological tool and a useful mechanistic probe for the function and coupling between STIM1 and Orai1 channels.
UR - http://www.scopus.com/inward/record.url?scp=84922271110&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84922271110&partnerID=8YFLogxK
U2 - 10.1016/j.ceca.2014.10.005
DO - 10.1016/j.ceca.2014.10.005
M3 - Article
C2 - 25459299
AN - SCOPUS:84922271110
SN - 0143-4160
VL - 56
SP - 482
EP - 492
JO - Cell Calcium
JF - Cell Calcium
IS - 6
ER -