TY - JOUR
T1 - Potential of dual-skinned, high-flux membranes to reduce backtransport in hemodialysis
AU - Soltys, Paul J.
AU - Zydney, Andrew
AU - Leypoldt, John K.
AU - Henderson, Lee W.
AU - Ofsthun, Norma J.
PY - 2000
Y1 - 2000
N2 - Background. Potential backfiltration of cytokine-inducing material is a clinical concern during hemodialysis conducted with high-flux membranes. Novel hollow-fiber membranes were developed that had asymmetric convective solute transport properties, aimed at reducing the passage of potentially harmful molecules from dialysate to blood, while maintaining the desired fluid and solute movement from blood to dialysate. Methods. Sieving coefficient as a function of molecular weight was measured in vitro using polydisperse dextrans. Measurements were conducted using two different flat-sheet membranes in series or using hollow fiber membranes having two integrally formed skin layers. Based on measured experimental parameters, model calculations simulated the performance of a clinical-scale dialyzer containing these new membranes versus that of a commercially available high-flux dialyzer. Results. Asymmetric convective solute transport was demonstrated using both commercial flat-sheet and newly developed hollow-fiber membranes. For two flat-sheet membranes in series, the extent of asymmetric transport was dependent on the order in which the solution was filtered through the membranes. For the hollow-fiber membranes, the nominal molecular weight cut-off was 20 kD in the blood-to-dialysate direction and 13 kD in the dialysate-to-blood direction. For this membrane, model calculations predict that clearance of a β2-microglobulin-sized molecule (11,800 D) would be significantly greater from blood to dialysate than in the reverse direction, even under conditions of zero net ultrafiltration. Conclusion. A novel hollow-fiber dialysis membrane was developed that allows greater convective solute transport from blood to dialysate than from dialysate to blood.
AB - Background. Potential backfiltration of cytokine-inducing material is a clinical concern during hemodialysis conducted with high-flux membranes. Novel hollow-fiber membranes were developed that had asymmetric convective solute transport properties, aimed at reducing the passage of potentially harmful molecules from dialysate to blood, while maintaining the desired fluid and solute movement from blood to dialysate. Methods. Sieving coefficient as a function of molecular weight was measured in vitro using polydisperse dextrans. Measurements were conducted using two different flat-sheet membranes in series or using hollow fiber membranes having two integrally formed skin layers. Based on measured experimental parameters, model calculations simulated the performance of a clinical-scale dialyzer containing these new membranes versus that of a commercially available high-flux dialyzer. Results. Asymmetric convective solute transport was demonstrated using both commercial flat-sheet and newly developed hollow-fiber membranes. For two flat-sheet membranes in series, the extent of asymmetric transport was dependent on the order in which the solution was filtered through the membranes. For the hollow-fiber membranes, the nominal molecular weight cut-off was 20 kD in the blood-to-dialysate direction and 13 kD in the dialysate-to-blood direction. For this membrane, model calculations predict that clearance of a β2-microglobulin-sized molecule (11,800 D) would be significantly greater from blood to dialysate than in the reverse direction, even under conditions of zero net ultrafiltration. Conclusion. A novel hollow-fiber dialysis membrane was developed that allows greater convective solute transport from blood to dialysate than from dialysate to blood.
UR - http://www.scopus.com/inward/record.url?scp=0033852345&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033852345&partnerID=8YFLogxK
U2 - 10.1046/j.1523-1755.2000.00231.x
DO - 10.1046/j.1523-1755.2000.00231.x
M3 - Article
C2 - 10916107
AN - SCOPUS:0033852345
SN - 0085-2538
VL - 58
SP - 818
EP - 828
JO - Kidney International
JF - Kidney International
IS - 2
M1 - 4491750
ER -