TY - JOUR
T1 - PPAR-α-null mice are protected from high-fat diet-induced insulin resistance
AU - Guerre-Millo, Michèle
AU - Rouault, Christine
AU - Poulain, Philippe
AU - André, Jocelyne
AU - Poitout, Vincent
AU - Peters, Jeffrey M.
AU - Gonzalez, Frank J.
AU - Fruchart, Jean Charles
AU - Reach, Gérard
AU - Staels, Bart
PY - 2001/12
Y1 - 2001/12
N2 - Peroxisome proliferator-activated receptor (PPAR)-α controls the expression of genes involved in lipid metabolism. PPAR-α furthermore participates to maintain blood glucose during acute metabolic stress, as shown in PPAR-α-null mice, which develop severe hypoglycemia when fasted. Here, we assessed a potential role for PPAR-α in glucose homeostasis in response to long-term high-fat feeding. When subjected to this nutritional challenge, PPAR-α-null mice remained normoglycemic and normoinsulinemic, whereas wild-type mice became hyperinsulinemic (190%; P < 0.05) and slightly hyperglycemic (120%; NS). Insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) were performed to evaluate insulin resistance (IR). Under standard diet, the response to both tests was similar in wild-type and PPAR-α-null mice. Under high-fat diet, however, the efficiency of insulin in ITT was reduced and the amount of hyperglycemia in GTT was increased only in wild-type and not in PPAR-α-null mice. The IR index, calculated as the product of the areas under glucose and insulin curves in GTT, increased fourfold in high-fat-fed wild-type mice, whereas it remained unchanged in PPAR-α-null mice. In contrast, PPAR-α deficiency allowed the twofold rise in adiposity and blood leptin levels elicited by the diet. Thus, the absence of PPAR-α dissociates IR from high-fat diet-induced increase in adiposity. The effects of PPAR-α deficiency on glucose homeostasis seem not to occur via the pancreas, because glucose-stimulated insulin secretion of islets was not influenced by the PPAR-α genotype. These data suggest that PPAR-α plays a role for the development of IR in response to a Western-type high-fat diet.
AB - Peroxisome proliferator-activated receptor (PPAR)-α controls the expression of genes involved in lipid metabolism. PPAR-α furthermore participates to maintain blood glucose during acute metabolic stress, as shown in PPAR-α-null mice, which develop severe hypoglycemia when fasted. Here, we assessed a potential role for PPAR-α in glucose homeostasis in response to long-term high-fat feeding. When subjected to this nutritional challenge, PPAR-α-null mice remained normoglycemic and normoinsulinemic, whereas wild-type mice became hyperinsulinemic (190%; P < 0.05) and slightly hyperglycemic (120%; NS). Insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) were performed to evaluate insulin resistance (IR). Under standard diet, the response to both tests was similar in wild-type and PPAR-α-null mice. Under high-fat diet, however, the efficiency of insulin in ITT was reduced and the amount of hyperglycemia in GTT was increased only in wild-type and not in PPAR-α-null mice. The IR index, calculated as the product of the areas under glucose and insulin curves in GTT, increased fourfold in high-fat-fed wild-type mice, whereas it remained unchanged in PPAR-α-null mice. In contrast, PPAR-α deficiency allowed the twofold rise in adiposity and blood leptin levels elicited by the diet. Thus, the absence of PPAR-α dissociates IR from high-fat diet-induced increase in adiposity. The effects of PPAR-α deficiency on glucose homeostasis seem not to occur via the pancreas, because glucose-stimulated insulin secretion of islets was not influenced by the PPAR-α genotype. These data suggest that PPAR-α plays a role for the development of IR in response to a Western-type high-fat diet.
UR - http://www.scopus.com/inward/record.url?scp=0035653490&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035653490&partnerID=8YFLogxK
U2 - 10.2337/diabetes.50.12.2809
DO - 10.2337/diabetes.50.12.2809
M3 - Article
C2 - 11723064
AN - SCOPUS:0035653490
SN - 0012-1797
VL - 50
SP - 2809
EP - 2814
JO - Diabetes
JF - Diabetes
IS - 12
ER -