Precise Timing and Phase-resolved Spectroscopy of the Young Pulsar J1617–5055 with NuSTAR

Jeremy Hare, Igor Volkov, George G. Pavlov, Oleg Kargaltsev, Simon Johnston

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the young, energetic pulsar PSR J1617–5055. Parkes Observatory 3 GHz radio observations of the pulsar (taken about 7 yr before the NuSTAR observations) are also reported here. NuSTAR detected pulsations at a frequency of f ≈ 14.4 Hz (P ≈ 69.44 ms) and, in addition, the observation was long enough to measure the source’s frequency derivative, Hz s−1. We find that the pulsar shows one peak per period at both hard X-ray and radio wavelengths, but that the hard X-ray pulse is broader (having a duty cycle of ∼0.7), than the radio pulse (having a duty cycle of ∼0.08). Additionally, the radio pulse is strongly linearly polarized. J1617's phase-integrated hard X-ray spectrum is well fit by an absorbed power-law model, with a photon index Γ = 1.59 ± 0.02. The hard X-ray pulsations are well described by three Fourier harmonics, and have a pulsed fraction that increases with energy. We also fit the phase-resolved NuSTAR spectra with an absorbed power-law model in five phase bins and find that the photon index varies with phase from Γ = 1.52 ± 0.03 at phases around the flux maximum to Γ = 1.79 ± 0.06 around the flux minimum. Last, we compare our results with other pulsars whose magnetospheric emission is detected at hard X-ray energies and find that, similar to previous studies, J1617's hard X-ray properties are more similar to the MeV pulsars than the GeV pulsars.

Original languageEnglish (US)
Article number249
JournalAstrophysical Journal
Issue number2
StatePublished - Dec 20 2021

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Precise Timing and Phase-resolved Spectroscopy of the Young Pulsar J1617–5055 with NuSTAR'. Together they form a unique fingerprint.

Cite this