Precision global measurements of London penetration depth in FeTe 0.58Se0.42

K. Cho, H. Kim, M. A. Tanatar, J. Hu, B. Qian, Z. Q. Mao, R. Prozorov

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

We report tunnel-diode resonator (TDR) measurements of in-plane London penetration depth, λ(T), in optimally-doped single crystals of FeTe 0.58Se0.42 with Tc∼14.8 K. To avoid any size-dependent calibration effect, six samples of different sizes and deliberately introduced surface roughness were measured and compared. The power-law behavior, Δλ(T)=ATn, was found for all samples with the average exponent navg=2.3±0.1 and the prefactor A avg=1.0±0.2 nm/K2.3. The average superfluid density is well described by the self-consistent two-gap γ model resulting in ΔI(0)/kBTc=1.93 and Δ II(0)/kBTc=0.9. These results suggest the nodeless two-gap pairing symmetry with strong pair breaking effects. In addition, it is found from comparison among six different samples that, while the exponent n remains virtually unchanged, the prefactor A shows some variation, but stays within a reasonable margin, ruling out some recent suggestions that surface conditions can significantly affect the results. This indicates that the calibration procedure used to obtain λ(T) from the measured TDR frequency shift is robust and that the uncertainty in sample dimensions and the nature of surface roughness play only a minor role.

Original languageEnglish (US)
Article number174502
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number17
DOIs
StatePublished - Nov 4 2011

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Precision global measurements of London penetration depth in FeTe 0.58Se0.42'. Together they form a unique fingerprint.

Cite this