Preconditioning stimuli induce autophagy via Sphingosine kinase 2 in mouse cortical neurons

Rui Sheng, Tong Tong Zhang, Valeria D. Felice, Tao Qin, Zheng Hong Qin, Charles D. Smith, Ellen Sapp, Marian Difiglia, Christian Waeber

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Sphingosine kinase 2 (SPK2) and autophagy are both involved in brain preconditioning, but whether preconditioning-induced SPK2 up-regulation and autophagy activation are linked mechanistically remains to be elucidated. In this study, we used in vitro and in vivo models to explore the role of SPK2-mediated autophagy in isoflurane and hypoxic preconditioning. In primary mouse cortical neurons, both isoflurane and hypoxic preconditioning induced autophagy. Isoflurane and hypoxic preconditioning protected against subsequent oxygen glucose deprivation or glutamate injury, whereas pretreatment with autophagy inhibitors (3-methyladenine or KU55933) abolished preconditioning- induced tolerance. Pretreatment with SPK2 inhibitors (ABC294640 and SKI-II) or SPK2 knockdown prevented preconditioning-induced autophagy. Isoflurane also induced autophagy in mouse in vivo as shown by Western blots for LC3 and p62, LC3 immunostaining, and electron microscopy. Isoflurane-induced autophagy in mice lacking the SPK1 isoform (SPK1-/-), but not in SPK2 -/- mice. Sphingosine 1-phosphate and the sphingosine 1-phosphate receptor agonist FTY720 did not protect against oxygen glucose deprivation in cultured neurons and did not alter the expression of LC3 and p62, suggesting that SPK2-mediated autophagy and protections are not S1P-dependent. Beclin 1 knockdown abolished preconditioninginduced autophagy, and SPK2 inhibitors abolished isoflurane-induced disruption of the Beclin 1/Bcl-2 association. These results strongly indicate that autophagy is involved in isoflurane preconditioning both in vivo and in vitro and that SPK2 contributes to preconditioning-induced autophagy, possibly by disrupting the Beclin 1/Bcl-2 interaction.

Original languageEnglish (US)
Pages (from-to)20845-20857
Number of pages13
JournalJournal of Biological Chemistry
Volume289
Issue number30
DOIs
StatePublished - Jul 25 2014

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Preconditioning stimuli induce autophagy via Sphingosine kinase 2 in mouse cortical neurons'. Together they form a unique fingerprint.

Cite this