Predictability and dynamics of a nonintensifying tropical storm: Erika (2009)

Erin B. Munsell, Fuqing Zhang, Daniel P. Stern

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


In this study, the predictability of Tropical Storm Erika (2009) is evaluated by analyzing a 60-member convection-permitting ensemble initialized with perturbations froma real-time ensembleKalman filter (EnKF) system. Erika was forecast to intensify into a hurricane by most operational numerical models, but in reality it never exceeded 50 kt (1 kt5 0.51ms21). There is a fairly large spread in the final intensities of the 60 ensemble members indicating large uncertainty in the deterministic prediction of Erika's intensity at 36-48-h lead times. An investigation into which factors prevented intensification of the weaker ensemblemembers provides insight that may aid in the forecasting of the intensity of future tropical cyclones under similar conditions. A variety of environmental and storm-related factors are examined, and the parameters that have the greatest relation to future intensity are determined based on ensemble sensitivity and correlation analysis. It appears that midlevel relative humidity, absolute vorticity, and the distribution of convection relative to the storm center all play a role in determining whether a given ensemble member intensifies or not. In addition, although differences in deep-layer shear among ensemble members are difficult to discern, many of the ensemble members that do not intensify fail to do so because of apparent dry air intrusions that wrap around the centers of the storms, particularly in the 700-500-hPa layer. In the presence of moderate shear, this dry air is able to penetrate the cores of the cyclones, thereby preventing further development.

Original languageEnglish (US)
Pages (from-to)2505-2524
Number of pages20
JournalJournal of the Atmospheric Sciences
Issue number8
StatePublished - 2013

All Science Journal Classification (ASJC) codes

  • Atmospheric Science


Dive into the research topics of 'Predictability and dynamics of a nonintensifying tropical storm: Erika (2009)'. Together they form a unique fingerprint.

Cite this