TY - JOUR
T1 - Predictability and dynamics of a nonintensifying tropical storm
T2 - Erika (2009)
AU - Munsell, Erin B.
AU - Zhang, Fuqing
AU - Stern, Daniel P.
PY - 2013
Y1 - 2013
N2 - In this study, the predictability of Tropical Storm Erika (2009) is evaluated by analyzing a 60-member convection-permitting ensemble initialized with perturbations froma real-time ensembleKalman filter (EnKF) system. Erika was forecast to intensify into a hurricane by most operational numerical models, but in reality it never exceeded 50 kt (1 kt5 0.51ms21). There is a fairly large spread in the final intensities of the 60 ensemble members indicating large uncertainty in the deterministic prediction of Erika's intensity at 36-48-h lead times. An investigation into which factors prevented intensification of the weaker ensemblemembers provides insight that may aid in the forecasting of the intensity of future tropical cyclones under similar conditions. A variety of environmental and storm-related factors are examined, and the parameters that have the greatest relation to future intensity are determined based on ensemble sensitivity and correlation analysis. It appears that midlevel relative humidity, absolute vorticity, and the distribution of convection relative to the storm center all play a role in determining whether a given ensemble member intensifies or not. In addition, although differences in deep-layer shear among ensemble members are difficult to discern, many of the ensemble members that do not intensify fail to do so because of apparent dry air intrusions that wrap around the centers of the storms, particularly in the 700-500-hPa layer. In the presence of moderate shear, this dry air is able to penetrate the cores of the cyclones, thereby preventing further development.
AB - In this study, the predictability of Tropical Storm Erika (2009) is evaluated by analyzing a 60-member convection-permitting ensemble initialized with perturbations froma real-time ensembleKalman filter (EnKF) system. Erika was forecast to intensify into a hurricane by most operational numerical models, but in reality it never exceeded 50 kt (1 kt5 0.51ms21). There is a fairly large spread in the final intensities of the 60 ensemble members indicating large uncertainty in the deterministic prediction of Erika's intensity at 36-48-h lead times. An investigation into which factors prevented intensification of the weaker ensemblemembers provides insight that may aid in the forecasting of the intensity of future tropical cyclones under similar conditions. A variety of environmental and storm-related factors are examined, and the parameters that have the greatest relation to future intensity are determined based on ensemble sensitivity and correlation analysis. It appears that midlevel relative humidity, absolute vorticity, and the distribution of convection relative to the storm center all play a role in determining whether a given ensemble member intensifies or not. In addition, although differences in deep-layer shear among ensemble members are difficult to discern, many of the ensemble members that do not intensify fail to do so because of apparent dry air intrusions that wrap around the centers of the storms, particularly in the 700-500-hPa layer. In the presence of moderate shear, this dry air is able to penetrate the cores of the cyclones, thereby preventing further development.
UR - http://www.scopus.com/inward/record.url?scp=84883774278&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883774278&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-12-0243.1
DO - 10.1175/JAS-D-12-0243.1
M3 - Article
AN - SCOPUS:84883774278
SN - 0022-4928
VL - 70
SP - 2505
EP - 2524
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 8
ER -