TY - GEN
T1 - Predicting a paradigm shift
T2 - 33rd International Conference on Design Theory and Methodology, DTM 2021, Held as Part of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2021
AU - Cole, Courtney
AU - Marhefka, Jacqueline
AU - Jablokow, Kathryn
AU - Mohammed, Susan
AU - Ritter, Sarah
AU - Miller, Scarlett
N1 - Publisher Copyright:
Copyright © 2021 by ASME.
PY - 2021
Y1 - 2021
N2 - Nearly 60 years ago, Thomas Kuhn revolutionized how we think of scientific discovery and innovation when he identified that scientific change can occur in incremental developments that improve upon existing solutions, or it can occur as drastic change in the form of a paradigm shift. In engineering design, both types of scientific change are critical when exploring the solution space. However, most methods of examining design outputs look at whether an idea is creative or not and not the type of creativity that is deployed or if we can predict what types of individuals or teams is more likely to develop a paradigm-shifting idea. Without knowing how to identify who will generate ideas that fit a certain paradigm, we do not know how to build teams that can develop ideas that better explore the solution space. This study provides the first attempt at answering this question through an empirical study with 60 engineering design student teams over the course of a 4- and 8-week design project. Specifically, we sought to identify the role of cognitive style using KAI score, derived from Kirton’s Adaption-Innovation (A-I) theory, on the paradigm-relatedness of ideas generated by individuals and teams. We also sought to investigate the role of crowdsourcing for measuring the paradigm-relatedness of design solutions. The results showed that KAI was positively related to a greater likelihood of an individual’s idea being categorized as paradigm-breaking. In addition, the team KAI diversity was also linked to a greater likelihood of teams’ ideas being categorized as paradigm-challenging. Finally, the results support the use of crowdsourcing for measuring the paradigm-relatedness of design solutions.
AB - Nearly 60 years ago, Thomas Kuhn revolutionized how we think of scientific discovery and innovation when he identified that scientific change can occur in incremental developments that improve upon existing solutions, or it can occur as drastic change in the form of a paradigm shift. In engineering design, both types of scientific change are critical when exploring the solution space. However, most methods of examining design outputs look at whether an idea is creative or not and not the type of creativity that is deployed or if we can predict what types of individuals or teams is more likely to develop a paradigm-shifting idea. Without knowing how to identify who will generate ideas that fit a certain paradigm, we do not know how to build teams that can develop ideas that better explore the solution space. This study provides the first attempt at answering this question through an empirical study with 60 engineering design student teams over the course of a 4- and 8-week design project. Specifically, we sought to identify the role of cognitive style using KAI score, derived from Kirton’s Adaption-Innovation (A-I) theory, on the paradigm-relatedness of ideas generated by individuals and teams. We also sought to investigate the role of crowdsourcing for measuring the paradigm-relatedness of design solutions. The results showed that KAI was positively related to a greater likelihood of an individual’s idea being categorized as paradigm-breaking. In addition, the team KAI diversity was also linked to a greater likelihood of teams’ ideas being categorized as paradigm-challenging. Finally, the results support the use of crowdsourcing for measuring the paradigm-relatedness of design solutions.
UR - http://www.scopus.com/inward/record.url?scp=85119984868&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119984868&partnerID=8YFLogxK
U2 - 10.1115/DETC2021-70909
DO - 10.1115/DETC2021-70909
M3 - Conference contribution
AN - SCOPUS:85119984868
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 33rd International Conference on Design Theory and Methodology (DTM)
PB - American Society of Mechanical Engineers (ASME)
Y2 - 17 August 2021 through 19 August 2021
ER -