TY - GEN
T1 - Predicting Influence Probabilities using Graph Convolutional Networks
AU - Liu, Jing
AU - Chen, Yudi
AU - Li, Duanshun
AU - Park, Noseong
AU - Lee, Kisung
AU - Lee, Dongwon
PY - 2019/12
Y1 - 2019/12
N2 - As one of the fundamental tasks in data analytics, Influence Maximization methods have been widely used in many real-world applications. For instance, in social network analysis, after building a directed graph, where edges are weighted with influence probabilities, influence maximization methods can be used to find a set of users who can maximize the spread of information under certain cascade models. Despite their successes, however, one critical weakness of existing influence maximization methods lies in the fact that edges are weighted with historical probabilities. As such, influence maximization methods perform sub-optimal if there occur non-trivial changes in future. In response to this challenge, in this work, we propose a novel prediction-driven influence maximization method that accurately predicts future influence probabilities using graph convolutional networks and find seed users based on the predicted probabilities. The experiments with five real-world datasets show that our prediction accuracy is accurate (e.g., mean absolute percentage error less than 0.1) in many cases, and our prediction-driven influence maximization is very close to the optimal.
AB - As one of the fundamental tasks in data analytics, Influence Maximization methods have been widely used in many real-world applications. For instance, in social network analysis, after building a directed graph, where edges are weighted with influence probabilities, influence maximization methods can be used to find a set of users who can maximize the spread of information under certain cascade models. Despite their successes, however, one critical weakness of existing influence maximization methods lies in the fact that edges are weighted with historical probabilities. As such, influence maximization methods perform sub-optimal if there occur non-trivial changes in future. In response to this challenge, in this work, we propose a novel prediction-driven influence maximization method that accurately predicts future influence probabilities using graph convolutional networks and find seed users based on the predicted probabilities. The experiments with five real-world datasets show that our prediction accuracy is accurate (e.g., mean absolute percentage error less than 0.1) in many cases, and our prediction-driven influence maximization is very close to the optimal.
UR - http://www.scopus.com/inward/record.url?scp=85081375666&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081375666&partnerID=8YFLogxK
U2 - 10.1109/BigData47090.2019.9006450
DO - 10.1109/BigData47090.2019.9006450
M3 - Conference contribution
T3 - Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
SP - 860
EP - 869
BT - Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
A2 - Baru, Chaitanya
A2 - Huan, Jun
A2 - Khan, Latifur
A2 - Hu, Xiaohua Tony
A2 - Ak, Ronay
A2 - Tian, Yuanyuan
A2 - Barga, Roger
A2 - Zaniolo, Carlo
A2 - Lee, Kisung
A2 - Ye, Yanfang Fanny
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 IEEE International Conference on Big Data, Big Data 2019
Y2 - 9 December 2019 through 12 December 2019
ER -