TY - JOUR
T1 - Predicting RNA-Protein Interactions Using Only Sequence Information
AU - Muppirala, Usha K.
AU - Honavar, Vasant G.
AU - Dobbs, Drena
N1 - Funding Information:
We thank Benjamin Lewis, Pete Zaback and Rasna Walia for valuable suggestions and comments on the manuscript. We also thank Yasser EL-Manzalawy for critical reading of the manuscript and other members of the Honavar research group for interesting discussions. The work of Vasant Honavar while working at the National Science Foundation was supported by the National Science Foundation. Any opinion, finding, and conclusions contained in this article are those of the authors and do not necessarily reflect the views of the National Science Foundation. This work was partially supported by funding from National Institutes of Health (GM066387 to VGH and DD) and Iowa State University’s Center for Integrated Animal Genomics (to UKM and DD). Partial funding for open access charges was provided by Iowa State University.
PY - 2011/12/22
Y1 - 2011/12/22
N2 - Background: RNA-protein interactions (RPIs) play important roles in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulation of gene expression to host defense against pathogens. High throughput experiments to identify RNA-protein interactions are beginning to provide valuable information about the complexity of RNA-protein interaction networks, but are expensive and time consuming. Hence, there is a need for reliable computational methods for predicting RNA-protein interactions.Results: We propose RPISeq, a family of classifiers for predicting RNA-protein interactions using only sequence information. Given the sequences of an RNA and a protein as input, RPIseq predicts whether or not the RNA-protein pair interact. The RNA sequence is encoded as a normalized vector of its ribonucleotide 4-mer composition, and the protein sequence is encoded as a normalized vector of its 3-mer composition, based on a 7-letter reduced alphabet representation. Two variants of RPISeq are presented: RPISeq-SVM, which uses a Support Vector Machine (SVM) classifier and RPISeq-RF, which uses a Random Forest classifier. On two non-redundant benchmark datasets extracted from the Protein-RNA Interface Database (PRIDB), RPISeq achieved an AUC (Area Under the Receiver Operating Characteristic (ROC) curve) of 0.96 and 0.92. On a third dataset containing only mRNA-protein interactions, the performance of RPISeq was competitive with that of a published method that requires information regarding many different features (e.g., mRNA half-life, GO annotations) of the putative RNA and protein partners. In addition, RPISeq classifiers trained using the PRIDB data correctly predicted the majority (57-99%) of non-coding RNA-protein interactions in NPInter-derived networks from E. coli, S. cerevisiae, D. melanogaster, M. musculus, and H. sapiens.Conclusions: Our experiments with RPISeq demonstrate that RNA-protein interactions can be reliably predicted using only sequence-derived information. RPISeq offers an inexpensive method for computational construction of RNA-protein interaction networks, and should provide useful insights into the function of non-coding RNAs. RPISeq is freely available as a web-based server at http://pridb.gdcb.iastate.edu/RPISeq/.
AB - Background: RNA-protein interactions (RPIs) play important roles in a wide variety of cellular processes, ranging from transcriptional and post-transcriptional regulation of gene expression to host defense against pathogens. High throughput experiments to identify RNA-protein interactions are beginning to provide valuable information about the complexity of RNA-protein interaction networks, but are expensive and time consuming. Hence, there is a need for reliable computational methods for predicting RNA-protein interactions.Results: We propose RPISeq, a family of classifiers for predicting RNA-protein interactions using only sequence information. Given the sequences of an RNA and a protein as input, RPIseq predicts whether or not the RNA-protein pair interact. The RNA sequence is encoded as a normalized vector of its ribonucleotide 4-mer composition, and the protein sequence is encoded as a normalized vector of its 3-mer composition, based on a 7-letter reduced alphabet representation. Two variants of RPISeq are presented: RPISeq-SVM, which uses a Support Vector Machine (SVM) classifier and RPISeq-RF, which uses a Random Forest classifier. On two non-redundant benchmark datasets extracted from the Protein-RNA Interface Database (PRIDB), RPISeq achieved an AUC (Area Under the Receiver Operating Characteristic (ROC) curve) of 0.96 and 0.92. On a third dataset containing only mRNA-protein interactions, the performance of RPISeq was competitive with that of a published method that requires information regarding many different features (e.g., mRNA half-life, GO annotations) of the putative RNA and protein partners. In addition, RPISeq classifiers trained using the PRIDB data correctly predicted the majority (57-99%) of non-coding RNA-protein interactions in NPInter-derived networks from E. coli, S. cerevisiae, D. melanogaster, M. musculus, and H. sapiens.Conclusions: Our experiments with RPISeq demonstrate that RNA-protein interactions can be reliably predicted using only sequence-derived information. RPISeq offers an inexpensive method for computational construction of RNA-protein interaction networks, and should provide useful insights into the function of non-coding RNAs. RPISeq is freely available as a web-based server at http://pridb.gdcb.iastate.edu/RPISeq/.
UR - http://www.scopus.com/inward/record.url?scp=84055185205&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84055185205&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-12-489
DO - 10.1186/1471-2105-12-489
M3 - Article
C2 - 22192482
AN - SCOPUS:84055185205
SN - 1471-2105
VL - 12
JO - BMC bioinformatics
JF - BMC bioinformatics
IS - 1
M1 - 489
ER -