TY - JOUR
T1 - Predicting the hydride rim by improving the solubility limits in the Hydride Nucleation-Growth-Dissolution (HNGD) model.
AU - Passelaigue, Florian
AU - Simon, Pierre Clément A.
AU - Motta, Arthur T.
N1 - Funding Information:
This work was performed with the support of the DOE NEUP IRP-17-13708 project “Development of a Mechanistic Hydride Behavior Model for Spent Fuel Cladding Storage and Transportation”; we acknowledge helpful discussions with the other members of the IRP project. In particular, we acknowledge the help of Bruce Kammenzind, who produced the majority of the data used in this work, and provided valuable insights when discussing the hypotheses presented here. We also acknowledge Dr. Quentin Auzoux of the CEA-Saclay for his help with finding data on cladding with inner liner.
Publisher Copyright:
© 2021
PY - 2022/1
Y1 - 2022/1
N2 - During operation of a light water reactor, waterside corrosion of the Zircaloy nuclear fuel cladding causes hydrogen pickup. The absorbed hydrogen can redistribute in the cladding driven by existing concentration, stress, and temperature gradients. When the concentration reaches the solubility limit, hydrides precipitate. These hydrides can be more brittle than the Zircaloy matrix, so they can endanger the cladding integrity during a transient if their concentration is too high. In recent years, extensive efforts have been made to understand hydrogen behavior and to develop simulation tools able to predict hydrogen diffusion and hydride precipitation and dissolution. These efforts led to the development of the Hydride Nucleation-Growth-Dissolution (HNGD) model and its implementation into the nuclear fuel performance code Bison. While it offers a significant improvement and accurately predicts the amount of precipitates, this model fails to predict the thickness of the hydride rim under a temperature gradient. The current work presents the limitation of the HNGD model and proposes two hypotheses to improve the model's accuracy. The first hypothesis introduces a time dependency to the supersolubility to reduce the nucleation barrier as hydrogen atoms find more favorable nucleation sites. The second one introduces a hydride content dependency to the solubility. These hypotheses were validated and implemented into Bison and are now available to the user community. The modified HNGD model accurately predicts the hydride rim thickness, and it was demonstrated that this updated model can be used in Bison to model Zircaloy cladding with a zirconium inner liner. Finally, potential experimental and numerical methods are discussed to further validate these hypotheses.
AB - During operation of a light water reactor, waterside corrosion of the Zircaloy nuclear fuel cladding causes hydrogen pickup. The absorbed hydrogen can redistribute in the cladding driven by existing concentration, stress, and temperature gradients. When the concentration reaches the solubility limit, hydrides precipitate. These hydrides can be more brittle than the Zircaloy matrix, so they can endanger the cladding integrity during a transient if their concentration is too high. In recent years, extensive efforts have been made to understand hydrogen behavior and to develop simulation tools able to predict hydrogen diffusion and hydride precipitation and dissolution. These efforts led to the development of the Hydride Nucleation-Growth-Dissolution (HNGD) model and its implementation into the nuclear fuel performance code Bison. While it offers a significant improvement and accurately predicts the amount of precipitates, this model fails to predict the thickness of the hydride rim under a temperature gradient. The current work presents the limitation of the HNGD model and proposes two hypotheses to improve the model's accuracy. The first hypothesis introduces a time dependency to the supersolubility to reduce the nucleation barrier as hydrogen atoms find more favorable nucleation sites. The second one introduces a hydride content dependency to the solubility. These hypotheses were validated and implemented into Bison and are now available to the user community. The modified HNGD model accurately predicts the hydride rim thickness, and it was demonstrated that this updated model can be used in Bison to model Zircaloy cladding with a zirconium inner liner. Finally, potential experimental and numerical methods are discussed to further validate these hypotheses.
UR - http://www.scopus.com/inward/record.url?scp=85118334852&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85118334852&partnerID=8YFLogxK
U2 - 10.1016/j.jnucmat.2021.153363
DO - 10.1016/j.jnucmat.2021.153363
M3 - Article
AN - SCOPUS:85118334852
SN - 0022-3115
VL - 558
JO - Journal of Nuclear Materials
JF - Journal of Nuclear Materials
M1 - 153363
ER -