TY - JOUR
T1 - Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41
AU - Xu, Xiaochun
AU - Song, Chunshan
AU - Andrésen, John M.
AU - Miller, Bruce G.
AU - Scaroni, Alan W.
N1 - Funding Information:
Funding for the work was provided by the US Department of Defense (via an interagency agreement with the US Department of Energy) and the Commonwealth of Pennsylvania under cooperative agreement no. DE-FC22-92PC92162.
PY - 2003/8/1
Y1 - 2003/8/1
N2 - Novel CO2 "molecular basket" adsorbents were prepared by synthesizing and modifying the mesoporous molecular sieve of MCM-41 type with polyethylenimine (PEI). The MCM-41-PEI adsorbents were characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption, thermal gravimetric analysis (TGA) as well as the CO2 adsorption/desorption performance. This paper reports on the effects of preparation conditions (PEI loadings, preparation methods, PEI loading procedures, types of solvents, solvent/MCM-41 ratios, addition of additive, and Si/Al ratios of MCM-41) on the CO2 adsorption/desorption performance of MCM-41-PEI. With the increase in PEI loading, the surface area, pore size and pore volume of the PEI-loaded MCM-41 adsorbent decreased. When the PEI loading was higher than 30 wt.%, the mesoporous pores began to be filled with PEI and the mesoporous molecular sieve MCM-41 showed a synergetic effect on the adsorption of CO2 by PEI. At PEI loading of 50 wt.% in MCM-41-PEI, the highest CO2 adsorption capacity of 246 mg/g-PEI was obtained, which is 30 times higher than that of the MCM-41 and is about 2.3 times that of the pure PEI. Impregnation was found to be a better method for the preparation of MCM-41-PEI adsorbents than mechanical mixing method. The adsorbent prepared by a one-step impregnation method had a higher CO2 adsorption capacity than that of prepared by a two-step impregnation method. The higher the Si/Al ratio of MCM-41 or the solvent/MCM-41 ratio, the higher the CO2 adsorption capacity. Using polyethylene glycol as additive into the MCM-41-PEI adsorbent increased not only the CO2 adsorption capacity, but also the rates of CO2 adsorption/desorption. A simple model was proposed to account for the synergetic effect of MCM-41 on the adsorption of CO2 by PEI.
AB - Novel CO2 "molecular basket" adsorbents were prepared by synthesizing and modifying the mesoporous molecular sieve of MCM-41 type with polyethylenimine (PEI). The MCM-41-PEI adsorbents were characterized by X-ray powder diffraction (XRD), N2 adsorption/desorption, thermal gravimetric analysis (TGA) as well as the CO2 adsorption/desorption performance. This paper reports on the effects of preparation conditions (PEI loadings, preparation methods, PEI loading procedures, types of solvents, solvent/MCM-41 ratios, addition of additive, and Si/Al ratios of MCM-41) on the CO2 adsorption/desorption performance of MCM-41-PEI. With the increase in PEI loading, the surface area, pore size and pore volume of the PEI-loaded MCM-41 adsorbent decreased. When the PEI loading was higher than 30 wt.%, the mesoporous pores began to be filled with PEI and the mesoporous molecular sieve MCM-41 showed a synergetic effect on the adsorption of CO2 by PEI. At PEI loading of 50 wt.% in MCM-41-PEI, the highest CO2 adsorption capacity of 246 mg/g-PEI was obtained, which is 30 times higher than that of the MCM-41 and is about 2.3 times that of the pure PEI. Impregnation was found to be a better method for the preparation of MCM-41-PEI adsorbents than mechanical mixing method. The adsorbent prepared by a one-step impregnation method had a higher CO2 adsorption capacity than that of prepared by a two-step impregnation method. The higher the Si/Al ratio of MCM-41 or the solvent/MCM-41 ratio, the higher the CO2 adsorption capacity. Using polyethylene glycol as additive into the MCM-41-PEI adsorbent increased not only the CO2 adsorption capacity, but also the rates of CO2 adsorption/desorption. A simple model was proposed to account for the synergetic effect of MCM-41 on the adsorption of CO2 by PEI.
UR - http://www.scopus.com/inward/record.url?scp=0043076051&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0043076051&partnerID=8YFLogxK
U2 - 10.1016/S1387-1811(03)00388-3
DO - 10.1016/S1387-1811(03)00388-3
M3 - Article
AN - SCOPUS:0043076051
SN - 1387-1811
VL - 62
SP - 29
EP - 45
JO - Microporous and Mesoporous Materials
JF - Microporous and Mesoporous Materials
IS - 1-2
ER -