Preparation and Characterization of Polyethylene Copolymers with PAH Side Groups as Carbon Fiber Precursors

Houxiang Li, Joseph Sengeh, Olumide D. Agboola, Jiho Seo, Ralph Colby, T. C. Mike Chung

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Polyethylene (PE) has the potential to become a promising carbon fiber (CF) precursor in terms of excellent melt-processibility, high carbon content (>85 wt %), and low material cost. However, the PE polymer is completely degraded at temperatures >480 °C under an inert atmosphere. In this study, we have investigated CF precursors based on a PE-g-PAH graft copolymer with several grafted PAH (polyaromatic hydrocarbons from a petroleum pitch) side groups and some ungrafted (free) pitch molecules that serve as precursors and plasticizers to lower its melt viscosity during melt-spinning. The presence of grafted PAH groups in the PE chain not only enhances the compatibility between the PE-g-PAH copolymer and free pitch molecules in the precursor but also assists in the one-step thermotransformation process to achieve a high C-yield. Thermogravimetric (TGA) analysis, evolved gas analysis mass spectrometry, oscillating rheology, solid-state 13C NMR, Raman spectroscopy, and X-ray diffraction were employed to monitor melt-processing and thermal transformation. Melt-spinning of this PE-g-PAH/Pitch blend precursor is suitable in the temperature range of 320−340 °C. Thermal transformation, including crosslinking, dehydrogenation of the PE chain, and carbonization, happens stepwise between 350 and 1000 °C under a noble gas atmosphere. Compared with the corresponding petroleum pitch, this PE-g-PAH/Pitch blend precursor exhibits a higher carbon yield (>70%) at 1000 °C. The resulting carbon derived from this precursor (without tension) at 1100 °C shows a similar d-spacing and stacking height but a higher lateral size compared to those typically observed in PAN-based carbon fibers. Overall, the discovery of this PE-g-PAH/Pitch precursor potentially provides an alternative strategy for preparing carbon fibers with a lower cost, less energy consumption, and easier handling throughout the entire production process.

Original languageEnglish (US)
Pages (from-to)791-802
Number of pages12
JournalACS Applied Polymer Materials
Volume5
Issue number1
DOIs
StatePublished - Jan 13 2023

All Science Journal Classification (ASJC) codes

  • Process Chemistry and Technology
  • Polymers and Plastics
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Preparation and Characterization of Polyethylene Copolymers with PAH Side Groups as Carbon Fiber Precursors'. Together they form a unique fingerprint.

Cite this