Presslight: Learning Max pressure control to coordinate traffic signals in arterial network

Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, Zhenhui Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

228 Scopus citations

Abstract

Traffic signal control is essential for transportation efficiency in road networks. It has been a challenging problem because of the complexity in traffic dynamics. Conventional transportation research suffers from the incompetency to adapt to dynamic traffic situations. Recent studies propose to use reinforcement learning (RL) to search for more efficient traffic signal plans. However, most existing RL-based studies design the key elements - reward and state - in a heuristic way. This results in highly sensitive performances and a long learning process. To avoid the heuristic design of RL elements, we propose to connect RL with recent studies in transportation research. Our method is inspired by the state-of-the-art method max pressure (MP) in the transportation field. The reward design of our method is well supported by the theory in MP, which can be proved to be maximizing the throughput of the traffic network, i.e., minimizing the overall network travel time. We also show that our concise state representation can fully support the optimization of the proposed reward function. Through comprehensive experiments, we demonstrate that our method outperforms both conventional transportation approaches and existing learning-based methods.

Original languageEnglish (US)
Title of host publicationKDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages1290-1298
Number of pages9
ISBN (Electronic)9781450362016
DOIs
StatePublished - Jul 25 2019
Event25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019 - Anchorage, United States
Duration: Aug 4 2019Aug 8 2019

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
Country/TerritoryUnited States
CityAnchorage
Period8/4/198/8/19

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Presslight: Learning Max pressure control to coordinate traffic signals in arterial network'. Together they form a unique fingerprint.

Cite this