Pressure waves in microscopic simulations of laser ablation

Leonid V. Zhigilei, Barbara J. Garrison

Research output: Contribution to journalConference articlepeer-review

99 Scopus citations

Abstract

Laser ablation of organic solids is a complex collective phenomenon that includes processes occurring at different length and time scales. A mesoscopic breathing sphere model developed recently for molecular dynamics simulation of laser ablation and damage of organic solids has significantly expanded the length-scale (up to hundreds of nanometers) and the time-scale (up to nanoseconds) of the simulations. The laser induced buildup of a high pressure within the absorbing volume and generation of the pressure waves propagating from the absorption region poses an additional challenge for molecular-level simulation. A new dynamic boundary condition is developed to minimize the effects of the reflection of the wave from the boundary of the computational cell. The boundary condition accounts for the laser induced pressure wave propagation as well as the direct laser energy deposition in the boundary region.

Original languageEnglish (US)
Pages (from-to)491-496
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
Volume538
StatePublished - 1999
EventProceedings of the 1998 MRS Fall Meeting - The Symposium 'Advanced Catalytic Materials-1998' - Boston, MA, USA
Duration: Nov 30 1998Dec 3 1998

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Pressure waves in microscopic simulations of laser ablation'. Together they form a unique fingerprint.

Cite this