PRINTABILITY AND OVERALL COOLING PERFORMANCE OF ADDITIVELY MANUFACTURED HOLES WITH INLET AND EXIT ROUNDING

Emma M. Veley, Karen A. Thole, Michael T. Furgeson, David G. Bogard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

To improve cooling effectiveness of gas turbine hardware, various film cooling hole shapes have previously been researched. Unique design modifications have recently been made possible through the design freedom allotted by additive manufacturing. As one example, creating a rounded inlet for a film-cooling hole can mitigate separation at the inlet. This study explores various geometric features by exploiting the uses of additive manufacturing for shaped film cooling holes at engine scale. Both printability and cooling performance were evaluated. Resulting from this study, additively manufactured holes with hole inlet and exit rounding were printed with some variations from the design intent. The largest deviations from the design intent occurred from dross roughness features located on the leeward side of the hole inlet. The measured overall effectiveness indicated that an as-built inlet fillet decreased in-hole convection as well as decreased jet mixing compared to the as-built sharp inlet. Including an exit fillet, which prevented an overbuilt diffuser exit, was also found to decrease jet mixing. A particular insight gained from this study is the importance of the convective cooling within the hole to the overall cooling performance. In-hole roughness, which is a result of additive manufacturing, increased convective cooling within the holes but also increased jet mixing as the coolant exited the hole. The increased jet mixing caused low overall effectiveness downstream of injection.

Original languageEnglish (US)
Title of host publicationHeat Transfer - Combustors; Film Cooling
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791886038
DOIs
StatePublished - 2022
EventASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 - Rotterdam, Netherlands
Duration: Jun 13 2022Jun 17 2022

Publication series

NameProceedings of the ASME Turbo Expo
Volume6-A

Conference

ConferenceASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022
Country/TerritoryNetherlands
CityRotterdam
Period6/13/226/17/22

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'PRINTABILITY AND OVERALL COOLING PERFORMANCE OF ADDITIVELY MANUFACTURED HOLES WITH INLET AND EXIT ROUNDING'. Together they form a unique fingerprint.

Cite this