TY - GEN
T1 - PRINTABILITY AND OVERALL COOLING PERFORMANCE OF ADDITIVELY MANUFACTURED HOLES WITH INLET AND EXIT ROUNDING
AU - Veley, Emma M.
AU - Thole, Karen A.
AU - Furgeson, Michael T.
AU - Bogard, David G.
N1 - Publisher Copyright:
Copyright © 2022 by ASME.
PY - 2022
Y1 - 2022
N2 - To improve cooling effectiveness of gas turbine hardware, various film cooling hole shapes have previously been researched. Unique design modifications have recently been made possible through the design freedom allotted by additive manufacturing. As one example, creating a rounded inlet for a film-cooling hole can mitigate separation at the inlet. This study explores various geometric features by exploiting the uses of additive manufacturing for shaped film cooling holes at engine scale. Both printability and cooling performance were evaluated. Resulting from this study, additively manufactured holes with hole inlet and exit rounding were printed with some variations from the design intent. The largest deviations from the design intent occurred from dross roughness features located on the leeward side of the hole inlet. The measured overall effectiveness indicated that an as-built inlet fillet decreased in-hole convection as well as decreased jet mixing compared to the as-built sharp inlet. Including an exit fillet, which prevented an overbuilt diffuser exit, was also found to decrease jet mixing. A particular insight gained from this study is the importance of the convective cooling within the hole to the overall cooling performance. In-hole roughness, which is a result of additive manufacturing, increased convective cooling within the holes but also increased jet mixing as the coolant exited the hole. The increased jet mixing caused low overall effectiveness downstream of injection.
AB - To improve cooling effectiveness of gas turbine hardware, various film cooling hole shapes have previously been researched. Unique design modifications have recently been made possible through the design freedom allotted by additive manufacturing. As one example, creating a rounded inlet for a film-cooling hole can mitigate separation at the inlet. This study explores various geometric features by exploiting the uses of additive manufacturing for shaped film cooling holes at engine scale. Both printability and cooling performance were evaluated. Resulting from this study, additively manufactured holes with hole inlet and exit rounding were printed with some variations from the design intent. The largest deviations from the design intent occurred from dross roughness features located on the leeward side of the hole inlet. The measured overall effectiveness indicated that an as-built inlet fillet decreased in-hole convection as well as decreased jet mixing compared to the as-built sharp inlet. Including an exit fillet, which prevented an overbuilt diffuser exit, was also found to decrease jet mixing. A particular insight gained from this study is the importance of the convective cooling within the hole to the overall cooling performance. In-hole roughness, which is a result of additive manufacturing, increased convective cooling within the holes but also increased jet mixing as the coolant exited the hole. The increased jet mixing caused low overall effectiveness downstream of injection.
UR - http://www.scopus.com/inward/record.url?scp=85141488116&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141488116&partnerID=8YFLogxK
U2 - 10.1115/GT2022-83313
DO - 10.1115/GT2022-83313
M3 - Conference contribution
AN - SCOPUS:85141488116
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer - Combustors; Film Cooling
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022
Y2 - 13 June 2022 through 17 June 2022
ER -