Prism-based Discontinuous Galerkin Time Domain Analysis of Frequency Selective Surfaces in Lossy Water

Wending Mai, Sawyer D. Campbell, Douglas H. Werner, Yifan Chen, Huaguang Bao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Planar periodic structures are widely utilized in microwave applications. The prism-based Discontinuous Galerkin time domain (DGTD) method is optimal to cope with the modeling challenges associated with these planar structures. In this work, we modified the prism based DGTD to take lossy materials into account. A ring-shaped frequency selective surface (FSS) is studied as a representative numerical example. When submerged into water, the operating frequency of the FSS is lowered dramatically. We test the algorithm with distilled and tap water of different conductivity. Results of both examples compare well with references of commercial software, which validates the accuracy of the modified DGTD algorithm.

Original languageEnglish (US)
Title of host publication2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1077-1078
Number of pages2
ISBN (Electronic)9781728166704
DOIs
StatePublished - Jul 5 2020
Event2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Virtually, Toronto, Canada
Duration: Jul 5 2020Jul 10 2020

Publication series

Name2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020 - Proceedings

Conference

Conference2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, IEEECONF 2020
Country/TerritoryCanada
CityVirtually, Toronto
Period7/5/207/10/20

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Instrumentation

Fingerprint

Dive into the research topics of 'Prism-based Discontinuous Galerkin Time Domain Analysis of Frequency Selective Surfaces in Lossy Water'. Together they form a unique fingerprint.

Cite this