TY - GEN
T1 - Privacy Attacks to the 4G and 5G Cellular Paging Protocols Using Side Channel Information
AU - Hussain, Syed Rafiul
AU - Echeverria, Mitziu
AU - Chowdhury, Omar
AU - Li, Ninghui
AU - Bertino, Elisa
N1 - Publisher Copyright:
© NDSS 2019.All rights reserved.
PY - 2019
Y1 - 2019
N2 - The cellular paging (broadcast) protocol strives to balance between a cellular device’s energy consumption and quality-of-service by allowing the device to only periodically poll for pending services in its idle, low-power state. For a given cellular device and serving network, the exact time periods when the device polls for services (called the paging occasion) are fixed by design in the 4G/5G cellular protocol. In this paper, we show that the fixed nature of paging occasions can be exploited by an adversary in the vicinity of a victim to associate the victim’s soft-identity (e.g., phone number, Twitter handle) with its paging occasion, with only a modest cost, through an attack dubbed ToRPEDO. Consequently, ToRPEDO can enable an adversary to verify a victim’s coarse-grained location information, inject fabricated paging messages, and mount denial-of-service attacks. We also demonstrate that, in 4G and 5G, it is plausible for an adversary to retrieve a victim device’s persistent identity (i.e., IMSI) with a brute-force IMSI-Cracking attack while using ToRPEDO as an attack sub-step. Our further investigation on 4G paging protocol deployments also identified an implementation oversight of several network providers which enables the adversary to launch an attack, named PIERCER, for associating a victim’s phone number with its IMSI; subsequently allowing targeted user location tracking. All of our attacks have been validated and evaluated in the wild using commodity hardware and software. We finally discuss potential countermeasures against the presented attacks.
AB - The cellular paging (broadcast) protocol strives to balance between a cellular device’s energy consumption and quality-of-service by allowing the device to only periodically poll for pending services in its idle, low-power state. For a given cellular device and serving network, the exact time periods when the device polls for services (called the paging occasion) are fixed by design in the 4G/5G cellular protocol. In this paper, we show that the fixed nature of paging occasions can be exploited by an adversary in the vicinity of a victim to associate the victim’s soft-identity (e.g., phone number, Twitter handle) with its paging occasion, with only a modest cost, through an attack dubbed ToRPEDO. Consequently, ToRPEDO can enable an adversary to verify a victim’s coarse-grained location information, inject fabricated paging messages, and mount denial-of-service attacks. We also demonstrate that, in 4G and 5G, it is plausible for an adversary to retrieve a victim device’s persistent identity (i.e., IMSI) with a brute-force IMSI-Cracking attack while using ToRPEDO as an attack sub-step. Our further investigation on 4G paging protocol deployments also identified an implementation oversight of several network providers which enables the adversary to launch an attack, named PIERCER, for associating a victim’s phone number with its IMSI; subsequently allowing targeted user location tracking. All of our attacks have been validated and evaluated in the wild using commodity hardware and software. We finally discuss potential countermeasures against the presented attacks.
UR - http://www.scopus.com/inward/record.url?scp=85137909890&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85137909890&partnerID=8YFLogxK
U2 - 10.14722/ndss.2019.23442
DO - 10.14722/ndss.2019.23442
M3 - Conference contribution
AN - SCOPUS:85137909890
T3 - 26th Annual Network and Distributed System Security Symposium, NDSS 2019
BT - 26th Annual Network and Distributed System Security Symposium, NDSS 2019
PB - The Internet Society
T2 - 26th Annual Network and Distributed System Security Symposium, NDSS 2019
Y2 - 24 February 2019 through 27 February 2019
ER -