TY - GEN
T1 - Probabilistic forecasting of symbol sequences with deep neural networks
AU - Hauser, Michael
AU - Fu, Yiwei
AU - Li, Yue
AU - Phoha, Shashi
AU - Ray, Asok
N1 - Publisher Copyright:
© 2017 American Automatic Control Council (AACC).
PY - 2017/6/29
Y1 - 2017/6/29
N2 - Time series forecasting is usually done in a deterministic sense, such as in autoregressive moving average models, where a future state is predicted as a linear combination of past events. However, by formulating the problem in a probabilistic sense, soft predictions are obtained from a given probability mass function. This paper uses a deep neural network for probabilistic forecasting of time series by minimizing the cross entropy of the probability of future symbols from a given state. The advantage of this type of model is that it makes probabilistic inferences from the ground up, and without any restrictive assumptions (e.g., second order statistics). The efficacy of the proposed model is tested by forecasting the emergence of combustion instabilities, defined to be the root mean square of the pressure signal inside a laboratory-scale combustor system. The proposed algorithm has been compared with the autoregressive moving average (ARMA) model, which acts as a baseline for many time-series forecasting tasks, and the proposed model is shown to significantly outperform the ARMA model in this task.
AB - Time series forecasting is usually done in a deterministic sense, such as in autoregressive moving average models, where a future state is predicted as a linear combination of past events. However, by formulating the problem in a probabilistic sense, soft predictions are obtained from a given probability mass function. This paper uses a deep neural network for probabilistic forecasting of time series by minimizing the cross entropy of the probability of future symbols from a given state. The advantage of this type of model is that it makes probabilistic inferences from the ground up, and without any restrictive assumptions (e.g., second order statistics). The efficacy of the proposed model is tested by forecasting the emergence of combustion instabilities, defined to be the root mean square of the pressure signal inside a laboratory-scale combustor system. The proposed algorithm has been compared with the autoregressive moving average (ARMA) model, which acts as a baseline for many time-series forecasting tasks, and the proposed model is shown to significantly outperform the ARMA model in this task.
UR - http://www.scopus.com/inward/record.url?scp=85027035902&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027035902&partnerID=8YFLogxK
U2 - 10.23919/ACC.2017.7963431
DO - 10.23919/ACC.2017.7963431
M3 - Conference contribution
AN - SCOPUS:85027035902
T3 - Proceedings of the American Control Conference
SP - 3147
EP - 3152
BT - 2017 American Control Conference, ACC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 American Control Conference, ACC 2017
Y2 - 24 May 2017 through 26 May 2017
ER -